共查询到20条相似文献,搜索用时 10 毫秒
1.
A series of bromine-containing flame-retardant plastics was used to demonstrate the applicability of pulsed radio frequency glow discharge mass spectrometry to the determination of elements in commercial polymers. The direct analysis of bulk samples produced both atomic and molecular species, allowing elemental identification and molecular characterization. However, the low ion signal intensities hindered quantification. Atomization mechanisms for the plastic samples were studied in detail using scanning electron microscopy and mass spectrometry. Although some thermal desorption was observed, sputter atomization dominated when samples were not subjected to excessive discharge power. The sputter rates of various polymers, as evidenced by sputter weight loss measurements, showed a strong correlation with their ion production capabilities. Sputtering rates were related to the physical and chemical properties inherent to a polymer's composition. Analysis of samples compacted with a silver binder provided intense analyte signals allowing quantitative analysis. Signal stability, measurement accuracy, measurement precision, and detection limits were all assessed. 相似文献
2.
We report here the first coupling of fast GC to IRMS, in a system capable of 250 ms peak widths (fwhm) at 1 mL/min flow rates, one-fifth as narrow as any previously reported GCC-IRMS system. We developed an optimized postcolumn interface that results in minimal peak broadening, using a programmable temperature vaporization injector in place of a rotary valve or backflush system to divert solvent, a narrow capillary combustion reactor followed by a cryogenic water trap with narrow-bore (<0.20 mm i.d.) transfer lines, and a narrow i.d. open split to the IRMS directly inserted into the column effluent. Quantitative combustion was demonstrated with CH4 injections. A comparison of CO2 injections with different fwhm peak widths (250, 2500, and 7500 ms) showed similar precisions, SD(delta13C)=0.2-0.3 per thousand, for injections of >600 pmol C on column; precision for the narrow peaks (250 ms) was considerably better for injections<150 pmol C on column. SD(delta13C)<1 per thousand was achievable for injections of 5-15 pmol on column for 250 ms wide peaks, 10-fold better precision than 2500 ms wide peaks, and within a factor of 3 of the counting statistics limit. For a mixture of 15 fatty acid methyl esters (FAME), 1.5 nmol C of each on column yielded typical SD(delta13Cpdb)=0.4 per thousand for fast GC and 0.5 per thousand for conventional GC. For 14 of the 15 FAME, delta13C values between the two systems were within+/-1.5 per thousand and not significantly different. Fast GCC-IRMS required one-third the run time (450 s vs 1400 s) to achieve comparable resolution. Mean peak widths for fast GCC-IRMS of the FAME were 720 ms, compared to 650 ms by fast GC with flame ionization detection. At a 15-fold dilution (100 pmol C on column for each FAME), fast GCC-IRMS achieved approximately 2-fold better precision and accuracy than similar injections on conventional GCC-IRMS. Finally, a mixture of 10 steroids (approximately 7 nmol C (100 ng) each on column) was analyzed with mean precision of SD(delta13C)=0.2 per thousand in 620 s by fast GCC-IRMS, while conventional GCC-IRMS required 1200 s and achieved poorer resolution. delta13C values for the two system were similar (Deltadelta13C1 nmol C) and achieves modest precision (approximately 1 per thousand) near the counting statistics limit on low level components. 相似文献
3.
The H3 factor, K, is a parameter required in high-precision, mass spectrometric analyses of hydrogen isotopic abundances. When H2 is used as the sample gas, R* = R - Ki2, where R* is the true HD/H2 ratio, R is the observed (mass 3)/(mass 2) ion-current ratio, and i2 is the ion current at mass 2. Four different methods for the determination of K were defined and tested under conditions characteristic of isotope ratio monitoring systems. Three of these were peak-based. The fourth employed steady flows of H2 from a conventional inlet system. Results obtained using the latter method were more precise (standard deviation of K = 0.1 versus approximately 0.6 ppm mV(-1) for the peak-based methods). However, use of the resulting values of K for correction of isotope ratio monitoring GC/MS results led to systematic errors as large as 9 per thousand, whereas use of the peak-based values led to no systematic errors. Values of K were only weakly dependent on the pressure of He, declining approximately 5% for each 10-fold increase in P(He). Small variations in partial pressures of H2O and CH4, potential contaminants under isotope ratio monitoring conditions, had no significant effect on values of K. 相似文献
4.
We report the first coupling of comprehensive two-dimensional gas chromatography (GC x GC) to online combustion isotope ratio mass spectrometry (C-IRMS). A GC x GC system, equipped with a longitudinally modulated cryogenic system (LMCS), was interfaced to an optimized low dead volume combustion interface to preserve <300 ms full width at half-maximum (fwhm) fast GC peaks generated on the second GC column (GC2). The IRMS detector amplifiers were modified by configuration of resistors and capacitors to enable fast response, and a home-built system acquired data at 25 Hz. Software was home-written to handle isotopic time shifts of less than one bin (40 ms) and to integrate peak slices to recover isotope ratios from cryogenically sliced peaks. The performance of the GC x GCC-IRMS system was evaluated by isotopic analysis of urinary steroid standards. Steroids were separated by a nonpolar GC1 column (30 m x 0.25 mm, 5% phenyl), modulated into multiple 4- or 8-s cryogenic slices by the LMCS, and then separated on a polar GC2 column (1 or 2 m x 0.1 mm, 50% phenyl). GC2 peak widths from a 1-m column averaged 276 ms fwhm. Steroid standard sliced peaks were successfully reconstructed to yield delta(13)C VPDB values with average precisions of SD(delta(13)C) = 0.30 per thousand and average accuracies within 0.34 per thousand, at 8 ng on column. Two steroids, coeluting in GC1, were baseline separated in GC2 and resulted in delta(13)C VPDB values with average precisions of SD(delta(13)C) = 0.86 per thousand and average accuracies within 0.26 per thousand, at 3 ng on column. Results from this prototype system demonstrate that the enhanced peak capacity and signal available in GC x GC is compatible with high-precision carbon isotope analysis. 相似文献
5.
6.
This work describes an approach to differential metabolomics that involves stable isotope labeling for relative quantification as part of sample analysis by two-dimensional gas chromatography/mass spectrometry (GCxGC/MS). The polar metabolome in control and experimental samples was extracted and differentially derivatized using isotopically light and heavy (D6) forms of the silylation reagent N-methyl-N-tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA). MTBSTFA derivatives are of much greater hydrolytic stability than the more common trimethylsilyl derivatives, thus diminishing the possibility of isotopomer scrambling during GC analysis. Subsequent to derivatization with MTBSTFA, differentially labeled samples were mixed and analyzed by GCxGC/MS. Metabolites were identified, and the isotope ratio of isotopomers was quantified. The method was tested using three classes of metabolites; amino acids, fatty acids, and organic acids. The relative concentration of isotopically labeled metabolites was determined by isotope ratio analysis. The accuracy and precision, respectively, in quantification of standard mixtures was 9.5 and 4.77% for the 16 amino acids, 9.7 and 2.83% for the mixture of 19 fatty acids, and 14 and 4.53% for the 20 organic acids. Suitability of the method for the examination of complex samples was demonstrated in analyses of the spiked blood serum samples. This differential isotope coding method proved to be an effective means to compare the concentration of metabolites between two samples simultaneously. 相似文献
7.
The utility of liquid chromatography coupled to the isotope ratio mass spectrometry technique (LC-IRMS) has already been established through a variety of successful applications. However, the analytical constraint related to the use of aqueous mobile phases limits the LC separation mechanism. We report here a new strategy for high-precision (13)C isotopic analyses based on temperature-programmed LC-IRMS using aqueous mobile phases. Under these conditions, the isotopic precision and accuracy were studied. On one hand, experiments were carried out with phenolic acids using isothermal LC conditions at high temperature (170 degrees C); on the other hand, several experiments were performed by ramping the temperature, as conventionally used in a gas chromatography-based method with hydrosoluble fatty acids and pulses of CO 2 reference gas. In isothermal conditions at 170 degrees C, despite the increase of the CO 2 background, p-coumaric acid and its glucuronide conjugate gave reliable isotopic ratios compared to flow injection analysis-isotopic ratio mass spectrometry (FIA-IRMS) analyses (isotopic precision and accuracy are lower than 0.3 per thousand). On the opposite, for its sulfate conjugate, the isotopic accuracy is affected by its coelution with p-coumaric acid. Not surprisingly, this study also demonstrates that at high temperature (170 degrees C), a compound eluting with long residence time (i.e., ferulic acid) is degraded, affecting thus the delta (13)C (drift of 3 per thousand) and the peak area (compared to FIA-IRMS analysis at room temperature). Quantitation is also reported in isothermal conditions for p-coumaric acid in the range of 10-400 ng/mL and with benzoic acid as an internal standard. For temperature gradient LC-IRMS, in the area of the LC gradient (set up at 20 degrees C/min), the drift of the background observed produces a nonlinearity of SD (delta (13)C) approximately 0.01 per thousand/mV. To circumvent this drift, which impacts severely the precision and accuracy, an alternative approach, i.e., eluting the compound on the plateau of temperature studied was reported here. Other experiments with temperature-programmed LC-IRMS experiments are also reported with the presence of methanol in the injected solution to mimic residual solvent originating from the sample preparation or to slightly increase the solubility of the targeted compound for high-precision measurement. 相似文献
8.
We have developed a rapid and simple measurement system for both content and stable isotopic compositions (13C and 18O) of atmospheric CO, using continuous-flow isotope ratio mass spectrometry by simultaneously monitoring the CO+ ion currents at masses 28, 29, and 30. The analytical system consisted sequentially of a sample trapping port (liquid nitrogen temperature silica gel and molecular sieve 5A), a gas dryer, a CO purification column (molecular sieve 5A), a cryofocusing unit, and a final purification column using a GC capillary. Analytical precision of 0.2 per thousand for 13C and 0.4 per thousand for 18O can be realized for samples that contain as little as 300 pmol of CO within 40 min for one sample analysis. Analytical blanks associated with the method are less than 1 pmol. The extent of analytical error in delta13C due to mass-independent fractionation of oxygen in natural CO is estimated to be less than 0.3 per thousand. Based on this system, we report herein a kinetic isotopic effect during CO consumption in soil. 相似文献
9.
Westphal CS McLean JA Hakspiel SJ Jackson WE McClain DE Montaser A 《Applied spectroscopy》2004,58(9):1044-1050
Inductively coupled plasma mass spectrometry (ICP-MS), coupled with a large-bore direct injection high efficiency nebulizer (LB-DIHEN), was utilized to determine the concentration and isotopic ratio of uranium in 11 samples of synthetic urine spiked with varying concentrations and ratios of uranium isotopes. Total U concentrations and (235)U/(238)U isotopic ratios ranged from 0.1 to 10 microg/L and 0.0011 and 0.00725, respectively. The results are compared with data from other laboratories that used either alpha-spectrometry or quadrupole-based ICP-MS with a conventional nebulizer-spray chamber arrangement. Severe matrix effects due to the high total dissolved solid content of the samples resulted in a 60 to 80% loss of signal intensity, but were compensated for by using (233)U as an internal standard. Accurate results were obtained with LB-DIHEN-ICP-MS, allowing for the positive identification of depleted uranium based on the (235)U/(238)U ratio. Precision for the (235)U/(238)U ratio is typically better than 5% and 15% for ICP-MS and alpha-spectrometry, respectively, determined over the concentrations and ratios investigated in this study, with the LB-DIHEN-ICP-MS system providing the most accurate results. Short-term precision (6 min) for the individual (235)U and (238)U isotopes in synthetic urine is better than 2% (N = 7), compared to approximately 5% for conventional nebulizer-spray chamber arrangements and >10% for alpha-spectrometry. The significance of these measurements is discussed for uranium exposure assessment of Persian Gulf War veterans affected by depleted uranium ammunitions. 相似文献
10.
Continuous-flow inlets from oxidation reactors are commonly used systems for biological sample introduction into isotope ratio mass spectrometers (IRMS) to measure 13C enrichment above natural abundance. Because the samples must be volatile enough to pass through a gas chromatograph, silylated derivatization reactions are commonly used to modify biological molecules to add the necessary volatility. Addition of a tert-butyldimethylsilyl (TBDMS) group is a common derivatization approach. However, we have found that samples do not produce the expected increment in measured 13C abundance as the TBDMS derivatives. We have made measurements of 13C enrichment of leucine and glutamate standards of known 13C enrichment using derivatives without silicon (N-acetyl n-propyl ester), with silicon (TBDMS), and an intermediate case. The measurements of 13C in amino acids derivatized without silicon were as expected. The 13C enrichment measurements using the TBDMS derivative were higher than expected but could be corrected to produce the expected 13C enrichment measurement by IRMS if one carbon was removed per silicon. We postulate that the silicon in the derivative forms silicon carbide compounds in the heated cupric oxide reactor, rather than forming silicon dioxide. Doing so reduces the amount of CO2 formed from the carbon in the sample. Silylated derivatives retain carbon with the silicon and must be used carefully and with correction factors to measure 13C enrichments by continuous-flow IRMS. 相似文献
11.
Little is known about the isotopic composition of formaldehyde in the atmosphere, a chemical intermediate in hydrocarbon oxidation. Here, we present a promising new method to analyze the carbon (delta 13C) and hydrogen (delta D) isotopic composition of atmospheric formaldehyde. The direct isotopic analytical technique described uses continuous-flow gas chromatography-isotope ratio mass spectrometry, which provides flexibility for either isotopic analysis without correction for derivative functional groups. Current levels of precision of measurement are +/-1.1 and +/-50 per thousand (1 sigma) for delta 13C and delta D analyses, respectively. Concentration of formaldehyde in ambient air is also determined, coincident with isotopic measurement, to a precision of +/-15%. The method has the required sensitivity for analyses of formaldehyde in urban air on relatively small volume grab samples of whole air (10-70L STP), potentially providing high temporal resolution. This is particularly advantageous for studying formaldehyde given its short lifetime and large variability in the atmosphere. 相似文献
12.
Determination of dissolved selenium species in environmental water samples using isotope dilution mass spectrometry. 总被引:1,自引:0,他引:1
In order to clarify the species composition of selenium in environmental water samples, analytical methods have been developed for the selective determination of different chemical forms of this element (selenite, selenate, and organic species including trimethylselenonium) using isotope dilution mass spectrometry (IDMS). The species analysis was made possible by means of chromatographic separation procedures and an 82Se-enriched selenate, selenite, and trimethylselenonium spike for the isotope dilution process. The total selenium concentration was determined after decomposition of organic compounds with a HNO3/HCIO4 mixture. Selenium was measured in the mass spectrometer by producing negative Se- thermal ions for detection. Precise determination at the parts-per-trillion level was achieved. This new methodology was applied to different types of natural water samples (groundwater, pond water, river water, moorland lake water) with total selenium concentrations in the range of 200 pg/g to 15 ng/g. Selenite and selenate have been the only detected species in most of the investigated samples, with selenate dominating all except one. In samples with high contents of dissolved organic carbon, however, different organoselenium compounds including trimethylselenonium ions were additionally quantified in the range of 10-95 pg/g. In these cases, the sum of all selenium species agreed well with the independently determined total element concentration. 相似文献
13.
Isotope amount ratio measurements by electrospray ionization mass spectrometry show large systematic biases. Moreover, the signal ratio response can vary nonlinearly with respect to the amount ratio depending on the concentration of the analyte or coeluting matrix components, among other things. Since isotope dilution relies inherently on the linearity of response, accurate quantitation is then more difficult to achieve. In this study, we outline a method to eliminate the quantitation errors due to the effects of the nonlinear signal response. The proposed approach is a hybrid of the method of standard additions and isotope dilution allowing correction for nonlinear trend. As a proof of concept, determination of arsenobetaine content in fish tissue was performed using liquid chromatography coupled with a linear quadrupole ion trap (LTQ) Orbitrap mass spectrometer. The nonlinear isotope dilution method could, in principle, be applied to correct isotope ratio measurement biases in popular relative quantitation methods of biomolecules such as stable isotope labeling by amino acids in cell culture (SILAC), isotope-coded affinity tag (ICAT), or isobaric tags for relative and absolute quantification (iTRAQ). 相似文献
14.
Sources of uncertainty in isotope ratio measurements by inductively coupled plasma mass spectrometry 总被引:1,自引:0,他引:1
A model is presented describing the effects of dead time and mass bias correction factor uncertainties, flicker noise, and counting statistics on isotope ratio measurement precision using inductively coupled plasma mass spectrometry (ICPMS) with a single collector. Noise spectral analysis is exploited to enable estimation of the flicker noise parameters. For the instrument used, the flicker noise component exhibited a fairly weak frequency (t) dependence (is proportional to f -0.33+/-0.12), but was directly proportional to the total number of counts, Q. As white noise, determined by counting statistics, is given by Q0.5, the isotope ratio measurement uncertainties will actually cease to improve when Q exceeds a certain threshold. This would suggest that flicker noise could become the limiting factor for the precision with which isotope ratios can be determined by ICPMS. However, under most experimental conditions, uncertainties associated with mass discrimination and dead time correction factors are decisive. For ratios up to approximately 22 (115In/113In), optimum major isotope count rates are generally below 0.3 MHz, for which precision in the mass discrimination factor is limiting. The model derived could be used as a starting point for determining optimum conditions and understanding the limitations of single-collector ICPMS for precise isotope ratio measurements. 相似文献
15.
Two fundamentally different approaches, termed "pointwise" and "peakwise," are currently used to correct hydrogen isotope ratio monitoring data for the presence of H3+ ion contributions. Consideration of the underlying assumptions shows that the peakwise approach is valid only for peaks with the same functional shape and only when background signals do not vary. The pointwise correction is much more versatile and can be used even when peak shapes and sizes, as well as background signals, vary significantly. It is not exact and is limited in accuracy by (1) the signal-broadening effects of electronic time constants, (2) the analog-to-digital conversion frequency, and (3) the highest frequency of the sample signal. To minimize errors for typical gas chromatographic signals, time constants of <500 ms and analog-to-digital sampling intervals of < or =250 ms are needed. Errors are further minimized by matching sample and standard peaks in both amplitude and D/H ratio. Using the pointwise algorithm, we demonstrate that a series of 14 homologous n-alkanes varying in concentration over a 5-fold range can be analyzed with a mean precision of 2.3 per thousand and no systematic errors. 相似文献
16.
17.
Goodman KJ 《Analytical chemistry》1998,70(5):833-837
A home-built combustion interface was constructed to improve signal, resolution, and maintenance of a continuous-flow gas isotope ratio system. Chromatographic peak shapes were preserved by minimizing changes in tubing diameter and dead volumes. A single piece of fused silica capillary was used to connect the gas chromatograph (GC) to the isotope ratio mass spectrometer (IRMS), thus eliminating extraneous combustion furnace and water trap fittings. Analysis of a standard mixture of hydrocarbons yielded a 2-fold increase in signal over a slightly modified conventional system. Column efficiency, expressed as trennzahl (TZ), improved significantly (Student's t-test 95% CI) by an average factor of 1.4 for replicates analyzed under similar conditions. The design is robust, requires less maintenance, and reduces leaks because the number of connections is minimized. Benefits of this system are transferable to virtually all commercially available continuous-flow systems. 相似文献
18.
An isotope dilution gas chromatography/mass spectrometry method using lithium bis(trifluoroethyl)dithiocarbamate as a chelating agent is described for the determination of chromium in urine. A wet digestion procedure with HNO3-H2O2 is used for oxidizing the organic matter associated with urine samples. The isotope ratios are measured by selected ion monitoring in a general-purpose mass spectrometer using a 10-m fused silica capillary column. Memory effect, in sequential analyses of samples with different isotope ratios, was evaluated by preparing a series of synthetic mixtures and was found to be negligible. The accuracy of the method was verified by quantitation of chromium in the NIST freeze-dried urine reference material, SRM-2670, with a recommended chromium concentration of 13 micrograms/L in the normal level and certified chromium concentration of 85 +/- 6 micrograms/L in the elevated level. 相似文献
19.
Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotope ratio mass spectrometry 总被引:1,自引:0,他引:1
A continuous flow method (CF-IRMS) for the rapid determination of the sulfur isotope composition of sulfide and sulfate minerals has significant advantages over the classic extraction method in terms of the reduced sample quantity and a rapid analytical cycle of less than 8 min/ analysis. For optimum performance, the technique is sensitive to a number of operating parameters, including sample weight and the O2 saturation of the Cu-reduction reactor. Raw data are corrected using a calibration based on five international and internal standards ranging from -17.3 to +20.3 per thousand, which requires monitoring in order to correct the effect of changing delta18O of the sample gas on the measured mass 66 values. Measured sulfur contents are within 1-1.5% of expected values and the reproducibility of delta34S values is +/-0.1 per thousand (1sigma). The technique has been used successfully for more than 1000 analyses of geological samples with a wide range of delta34S from -20 to +20 per thousand. 相似文献
20.