首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Synonymous codons are not used equally in many organisms, and the extent of codon bias varies among loci. Earlier studies have suggested that more highly expressed loci in Drosophila melanogaster are more biased, consistent with findings from several prokaryotes and unicellular eukaryotes that codon bias is partly due to natural selection for translational efficiency. We link this model of varying selection intensity to the population-genetics prediction that the effectiveness of natural selection is decreased under reduced recombination. In analyses of 385 D. melanogaster loci, we find that codon bias is reduced in regions of low recombination (i.e., near centromeres and telomeres and on the fourth chromosome). The effect does not appear to be a linear function of recombination rate; rather, it seems limited to regions with the very lowest levels of recombination. The large majority of the genome apparently experiences recombination at a sufficiently high rate for effective natural selection against suboptimal codons. These findings support models of the Hill-Robertson effect and genetic hitchhiking and are largely consistent with multiple reports of low levels of DNA sequence variation in regions of low recombination.  相似文献   

3.
Rates of synonymous and nonsynonymous nucleotide substitutions and codon usage bias (ENC) were estimated for a number of nuclear and chloroplast genes in a sample of centric and pennate diatoms. The results suggest that DNA evolution has taken place, on an average, at a slower rate in the chloroplast genes than in the nuclear genes: a rate variation pattern similar to that observed in land plants. Synonymous substitution rates in the chloroplast genes show a negative association with the degree of codon usage bias, suggesting that genes with a higher degree of codon usage bias have evolved at a slower rate. While this relationship has been shown in both prokaryotes and multicellular eukaryotes, it has not been demonstrated before in diatoms.  相似文献   

4.
We have assigned codon-anticodon recognition patterns for the whole set of transfer RNAs of Haemophilus influenzae Rd, Methanococcus jannaschii, and Synechocystis sp. PCC6803 using sequence information derived from the complete genome sequence of these organisms and have tabulated them along with those previously reported for Escherichia coli, Mycoplasma genitalium, Mycoplasma pneumoniae, and Saccharomyces cerevisiae. Using the resulting codon-anticodon tables, the bias in codon usage of genes encoding the entire protein and ribosomal protein complement of each of the seven microbial genomes was analyzed. Then, the codon adaptation index (CAIrp) for each protein gene was calculated using the codon usage preference of the ribosomal protein genes of the corresponding organism. Of the seven genomes examined, six showed CAIrp scores that roughly coincided with the expected level of gene expression. The result demonstrates that CAIrp analysis may be useful for prediction of the expression level of unknown genes when all or at least considerable portions of the genome sequence are available.  相似文献   

5.
Codon usage bias of 1,117 Drosophila melanogaster genes, as well as fewer D. pseudoobscura and D. virilis genes, was examined from the perspective of relative abundance of isoaccepting tRNAs and their changes during development. We found that each amino acid contributes about equally and highly significantly to overall codon usage bias, with the exception of Asp which had very low contribution to overall bias. Asp was also the only amino acid that did not show a clear preference for one of its synonymous codons. Synonymous codon usage in Drosophila was consistent with "optimal" codons deduced from the isoaccepting tRNA availability. Interestingly, amino acids whose major isoaccepting tRNAs change during development did not show as strong bias as those with developmentally unchanged tRNA pools. Asp is the only amino acid for which the major isoaccepting tRNAs change between larval and adult stages. We conclude that synonymous codon usage in Drosophila is well explained by tRNA availability and is probably influenced by developmental changes in relative abundance.  相似文献   

6.
Codon usage and base composition in sequences from the A + T-rich genome of Rickettsia prowazekii, a member of the alpha Proteobacteria, have been investigated. Synonymous codon usage patterns are roughly similar among genes, even though the data set includes genes expected to be expressed at very different levels, indicating that translational selection has been ineffective in this species. However, multivariate statistical analysis differentiates genes according to their G + C contents at the first two codon positions. To study this variation, we have compared the amino acid composition patterns of 21 R. prowazekii proteins with that of a homologous set of proteins from Escherichia coli. The analysis shows that individual genes have been affected by biased mutation rates to very different extents: genes encoding proteins highly conserved among other species being the least affected. Overall, protein coding and intergenic spacer regions have G + C content values of 32.5% and 21.4%, respectively. Extrapolation from these values suggests that R. prowazekii has around 800 genes and that 60-70% of the genome may be coding.  相似文献   

7.
The psbA gene of the chloroplast genome has a codon usage that is unusual for plant chloroplast genes. In the present study the evolutionary status of this codon usage is tested by reconstructing putative ancestral psbA sequences to determine the pattern of change in codon bias during angiosperm divergence. It is shown that the codon biases of the ancestral genes are much stronger than all extant flowering plant psbA genes. This is related to previous work that demonstrated a significant increase in synonymous substitution in psbA relative to other chloroplast genes. It is suggested, based on the two lines of evidence, that the codon bias of this gene currently is not being maintained by selection. Rather, the atypical codon bias simply may be a remnant of an ancestral codon bias that now is being degraded by the mutation bias of the chloroplast genome, in other words, that the psbA gene is not at equilibrium. A model for the evolution of selective pressure on the codon usage of plant chloroplast genes is discussed.  相似文献   

8.
Codon usage bias, the preferential use of particular codons within each codon family, is characteristic of synonymous base composition in many species, including Drosophila, yeast, and many bacteria. Preferential usage of particular codons in these species is maintained by natural selection acting largely at the level of translation. In Drosophila, as in bacteria, the rate of synonymous substitution per site is negatively correlated with the degree of codon usage bias, indicating stronger selection on codon usage in genes with high codon bias than in genes with low codon bias. Surprisingly, in these organisms, as well as in mammals, the rate of synonymous substitution is also positively correlated with the rate of nonsynonymous substitution. To investigate this correlation, we carried out a phylogenetic analysis of substitutions in 22 genes between two species of Drosophila, Drosophila pseudoobscura and D. subobscura, in codons that differ by one replacement and one synonymous change. We provide evidence for a relative excess of double substitutions in the same species lineage that cannot be explained by the simultaneous mutation of two adjacent bases. The synonymous changes in these codons also cannot be explained by a shift to a more preferred codon following a replacement substitution. We, therefore, interpret the excess of double codon substitutions within a lineage as being the result of relaxed constraints on both kinds of substitutions in particular codons.  相似文献   

9.
Two more organisms from different taxonomic groups were added to a new version of the Integrated Sequence-Structure Database (ISSD). ISSD serves as an integrated source of sequence and structure information for the analysis of correlations between mRNA synonymous codon usage and three-dimensional structure of the encoded proteins. ISSD now holds 88 non-homologous Escherichia coli proteins and 25 yeast Saccharomyces cerevisiae proteins in addition to the expanded set of mammalian proteins, which includes 166 proteins (107 in ISSD Version 1.0). Comparison of ISSD sequences with organism-specific codon usage data derived from CUTG database shows that it is a representative subset of the GenBank coding sequences data. Preliminary results of the statistical analysis confirm that sequence-structure correlations observed by us earlier are also present in the upgraded ISSD (Version 2.0), including bacterial and yeast proteins. The ISSD Version 2.0 release includes an improved Web-based data search and retrieval system and is accessible via URL http://www.protein.bio.msu.su/issd/. ISSD can be also accessed at ExPASy, URL http://www.expasy.ch/swissmod/swiss-model.htm l  相似文献   

10.
The nucleotide contents of the three codon positions show a number of statistical pairwise correlations, some of which are universal for all analysed genomes. Among the most prominent of these correlations are negative correlations between G and T contents found in genes of all species analysed. The pair A/C, which is complementary to G/T shows similar negative correlation in genes of most species. In the genes of several species including all mammalian genes studied, positive correlations between A and T contents, and G and C contents are found. Since these regularities are observed in all three codon positions they are connected with amino-acid content of proteins. Such correlations may origin from features of the mutation process or/and translation reading frame check. The well-known bias of the preference for G in the first codon position and its deficiency in the second is accompanied by opposite bias in T content. In the third codon position there is no general nucleotide preference, but its content is often biased with regard to GC content of the gene. G and T contents in this case are always shifted in the opposite directions Several ideas are drawn to explain this preference.  相似文献   

11.
The eukaryotic translational initiation factor 4E (eIF-4E) is an essential protein that binds the 5' cap structure with high specificity and affinity. Yeast eIF-4E is homologous to eIF-4E of higher eukaryotes, but interacts with a different set of cap-binding complex proteins. In the present study the distribution of yeast eIF-4E in Saccharomyces cerevisiae was found to be similar to that observed in higher cells, whereby the yeast factor was more concentrated in the nucleus than in the cytoplasm. Overexpression of yeast eIF-4E in S. cerevisiae exerted at most a minimal effect on growth in liquid minimal medium and was not found to influence the translation of reporter gene mRNAs bearing secondary structure in their leader regions. In a new method to study mRNA-protein interactions, biotinylated mRNAs were synthesized in vitro for use in studies of the binding of eIF-4E in yeast extracts. Streptavidin was used to adsorb the biotinylated mRNAs plus bound initiation factors. Stem-loop structures in the leader region did not influence the binding of eIF-4E or, in comparative experiments, of eIF-4A. Thus yeast eIF-4E shows both similarities and differences with respect to the distribution and function of its counterparts in higher eukaryotes.  相似文献   

12.
Interspecific comparisons of microsatellite loci have repeatedly shown that the loci are longer and more variable in the species from which they are derived (the focal species) than are homologous loci in other (nonfocal) species. There is debate as to whether this is due to directional evolution or to an ascertainment bias during the cloning and locus selection processes. This study tests these hypotheses by performing a reciprocal study. Eighteen perfect dinucleotide microsatellite loci identified from a Drosophila simulans library screen and 18 previously identified in an identical Drosophila melanogaster library screen were used to survey natural populations of each species. No difference between focal and nonfocal species was observed for mean PCR fragment length. However, heterozygosity and number of alleles were significantly higher in the focal species than in the nonfocal species. The most common allele in the Zimbabwe population of both species was sequenced for 31 of the 36 loci. The length of the longest stretch of perfect repeat units is, on average, longer in the focal species than in the non-focal species. There is a positive correlation between the length of the longest stretch of perfect repeats and heterozygosity. The difference in heterozygosity can thus be explained by a reduction in the length of the longest stretch of perfect repeats in the nonfocal species. Furthermore, flanking-sequence length difference was noted between the two species at 58% of the loci sequenced. These data do not support the predictions of the directional-evolution hypothesis; however, consistent with the ascertainment bias hypothesis, the lower variability in nonfocal species is an artifact of the microsatellite cloning and isolation process. Our results also suggest that the magnitude of ascertainment bias for repeat unit length is a function of the microsatellite size distribution in the genomes of different species.  相似文献   

13.
Translation of mitochondrial mRNAs in Saccharomyces cerevisiae depends on mRNA-specific translational activators that recognize the 5' untranslated leaders (5'-UTLs) of their target mRNAs. We have identified mutations in two new nuclear genes that suppress translation defects due to certain alterations in the 5'-UTLs of both the COX2 and COX3 mRNAs, indicating a general function in translational activation. One gene, MRP21, encodes a protein with a domain related to the bacterial ribosomal protein S21 and to unidentified proteins of several animals. The other gene, MRP51, encodes a novel protein whose only known homolog is encoded by an unidentified gene in S. kluyveri. Deletion of either MRP21 or MRP51 completely blocked mitochondrial gene expression. Submitochondrial fractionation showed that both Mrp21p and Mrp51p cosediment with the mitochondrial ribosomal small subunit. The suppressor mutations are missense substitutions, and those affecting Mrp21p alter the region homologous to E. coli S21, which is known to interact with mRNAs. Interactions of the suppressor mutations with leaky mitochondrial initiation codon mutations strongly suggest that the suppressors do not generally increase translational efficiency, since some alleles that strongly suppress 5'-UTL mutations fail to suppress initiation codon mutations. We propose that mitochondrial ribosomes themselves recognize a common feature of mRNA 5'-UTLs which, in conjunction with mRNA-specific translational activation, is required for organellar translation initiation.  相似文献   

14.
15.
Sequences of the gapA and ompA genes from 10 genera of enterobacteria have been analyzed. There is strong bias in codon usage, but different synonymous codons are preferred at different sites in the same gene. Site-specific preference for unfavored codons is not confined to the first 100 codons and is usually manifest between two codons utilizing the same tRNA. Statistical analyses, based on conclusions reached in an accompanying paper, show that the use of an unfavored codon at a given site in different genera is not due to common descent and must therefore be caused either by sequence-specific mutation or sequence-specific selection. Reasons are given for thinking that sequence-specific mutation cannot be responsible. We are unable to explain the preference between synonymous codons ending in C or T, but synonymous choice between A and G at third sites is largely explained by avoidance of AG-G (where the hyphen indicates the boundary between codons). We also observed that the preferred codon for proline in Enterobacter cloacea has changed from CCG to CCA.  相似文献   

16.
The evolution of two mitochondrial genes, cytochrome b and cytochrome c oxidase subunit II, was examined in several eutherian mammal orders, with special emphasis on the orders Artiodactyla and Rodentia. When analyzed using both maximum parsimony, with either equal or unequal character weighting, and neighbor joining, neither gene performed with a high degree of consistency in terms of the phylogenetic hypotheses supported. The phylogenetic inconsistencies observed for both these genes may be the result of several factors including differences in the rate of nucleotide substitution among particular lineages (especially between orders), base composition bias, transition/transversion bias, differences in codon usage, and different constraints and levels of homoplasy associated with first, second, and third codon positions. We discuss the implications of these findings for the molecular systematics of mammals, especially as they relate to recent hypotheses concerning the polyphyly of the order Rodentia, relationships among the Artiodactyla, and various interordinal relationships.  相似文献   

17.
The gene encoding an extremely stable inorganic pyrophosphatase from Sulfolobus sp. strain 7, a thermoacidophilic archaeon, was cloned and sequenced. An open reading frame consisted of 516 base pairs coding for a protein of 172-amino acid residues. The deduced sequence was supported by partial amino acid sequence analyses. All the catalytically important residues were conserved. A unique 17-base-pair sequence motif was found to be repeated four times in frame in the gene, encoding a cluster of acidic amino acids essential for the function. Although the codon usage of the gene was quite different from that of Escherichia coli, the gene was effectively expressed in E. coli. Coexpression of tRNA(Arg), cognate for the rare codon AGA in E. coli, however, further improved the production of the enzyme, which occupied more than 85% of the soluble proteins obtained after removal of heat denatured E. coli proteins.  相似文献   

18.
While genomic sequences are accumulating, finding the location of the genes remains a major issue that can be solved only for about a half of them by homology searches. Prediction methods are thus required, but unfortunately are not fully satisfying. Most prediction methods implicitly assume a unique model for genes. This is an oversimplification as demonstrated by the possibility to group coding sequences into several classes in Escherichia coli and other genomes. As no classification existed for Arabidopsis thaliana, we classified genes according to the statistical features of their coding sequences. A clustering algorithm using a codon usage model was developed and applied to coding sequences from A. thaliana, E. coli, and a mixture of both. By using it, Arabidopsis sequences were clustered into two classes. The CU1 and CU2 classes differed essentially by the choice of pyrimidine bases at the codon silent sites: CU2 genes often use C whereas CU1 genes prefer T. This classification discriminated the Arabidopsis genes according to their expressiveness, highly expressed genes being clustered in CU2 and genes expected to have a lower expression, such as the regulatory genes, in CU1. The algorithm separated the sequences of the Escherichia-Arabidopsis mixed data set into five classes according to the species, except for one class. This mixed class contained 89 % Arabidopsis genes from CU1 and 11 % E. coli genes, mostly horizontally transferred. Interestingly, most genes encoding organelle-targeted proteins, except the photosynthetic and photoassimilatory ones, were clustered in CU1. By tailoring the GeneMark CDS prediction algorithm to the observed coding sequence classes, its quality of prediction was greatly improved. Similar improvement can be expected with other prediction systems.  相似文献   

19.
Prokaryotes have three amino acid-specific class II tRNAs that possess a characteristic long variable arm, tRNASer, tRNALeuand tRNATyr, while eukaryotes have only two, tRNASerand tRNALeu. Because of such a phylogenetic divergence in the composition of tRNA, the class II tRNA system is a good candidate for studying how the tRNA recognition manner has evolved in association with the evolution of tRNA. We report here a cross-species aminoacylation study of the class II tRNAs, showing the unilateral aminoacylation specificity between Escherichia coli and a yeast, Saccharomyces cerevisiae. Both SerRS and LeuRS from E.coli were unable to aminoacylate yeast class II tRNAs; in contrast, the yeast counterparts were able to aminoacylate E.coli class II tRNAs. Yeast seryl-tRNA synthetase was able to aminoacylate not only E.coli tRNASerbut also tRNALeuand tRNATyr, and yeast LeuRS was able to aminoacylate not only E.coli tRNALeubut also tRNATyr. These results indicate that the recognition manner of class II tRNA, especially the discrimination strategy of each aminoacyl-tRNA synthetase against noncognate class II tRNAs, is significantly divergent between E.coli and yeast. This difference is thought to be due mainly to the different composition of class II tRNAs in E.coli and yeast.  相似文献   

20.
Translation termination requires two codon-specific protein-release factors in prokaryotes and one factor in eukaryotes. The underlying mechanism for stop codon recognition, as well as the biological meaning of the conservation of one or two release factors in the evolutionary kingdoms, are not known. The recent discovery of release factor genes and the molecular mimicry between translational factors and tRNA provide us with clues to the mechanisms of how proteins read the stop codon and terminate translation, shedding some light on the evolutionary aspect of release factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号