首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
张法明  沈军  孙剑飞  郭舒 《有色金属》2005,57(1):4-7,15
采用高能球磨工艺制备WC 10Co 0 8VC 0 2Cr2 C3纳米复合粉末,快速热压烧结制备纳米硬质合金块体,应用OM ,SEM ,TEM和EDXS观察合金的显微组织。观察发现纳米WC Co硬质合金的显微组织中粘结相呈空间网状结构贯穿于多边形状WC骨架空隙之间,在WC晶粒中观察到了呈团絮层状纳米析出相的存在,析出相为Co富集相,其形成机理是纳米WC Co材料结构失稳,在外加热场、压力场作用下诱发的相变行为  相似文献   

2.
采用低压烧结法制备了纳米WC-10Co硬质合金,研究了烧结温度对烧结体的晶粒、密度及硬度的影响.研究表明,随着烧结温度的降低,烧结体WC的晶粒长大不明显,同时烧结体的密度和硬度都随之增大.当烧结温度为1320℃时,WC-Co烧结体的晶粒约为200nm,硬度HRA为94.6,可获得致密的WC-Co硬质合金.  相似文献   

3.
采用低压烧结法制备了纳米WC-10Co硬质合金,研究了烧结温度对烧结体的晶粒、密度及硬度的影响.研究表明,随着烧结温度的降低,烧结体WC的晶粒长大不明显,同时烧结体的密度和硬度都随之增大.当烧结温度为1320℃时,WC-Co烧结体的晶粒约为200 nm,硬度HRA为94.6,可获得致密的WC-Co硬质合金.  相似文献   

4.
以圆葱碳(OLC11, 1 100 ℃及1 Pa条件下退火处理纳米金刚石所得)为原料, 在500~1 400 ℃/4~6 GPa/5~30 min条件下烧结合成无添加剂纳米晶聚晶金刚石(NPCD)块体。XRD、HRTEM、FESEM、维氏硬度等分析表明, 高温高压烧结后, OLC11转变为金刚石, 同时金刚石颗粒长大连接形成D-D型NPCD块体。NPCD主要由金刚石组成, 还含有石墨和少量无定形碳。NPCD内存在大量纳米孪晶。烧结温度对NPCD的晶粒尺寸、密度、维氏硬度影响较大, 烧结压力的影响较小。1 200 ℃/5.5 GPa/15 min合成的NPCD平均晶粒尺寸、密度和维氏硬度指标较好, 分别为10.7 nm、2.70 g/cm3和32 GPa。烧结过程中, 高温高压使得OLC11石墨层由内而外破裂形成金刚石颗粒, 相邻OLC11通过悬键连接形成金刚石大颗粒, 再通过D-D键键合形成NPCD块体。  相似文献   

5.
王乾 《陕西煤炭》2006,25(4):30-31
介绍了采用高能球磨法制备出纳米CeO2/Zn、纳米CeO2/A l复合粉末,用粉末冶金真空热压烧结制备出纳米CeO2/Zn、纳米CeO2/A l复合材料块的工艺方法。  相似文献   

6.
采用低温热压+高温无压烧结和冷压烧结工艺,以钨、镍和铜粉末为原料,制备用于硬质合金刀具的W-Ni-Cu支撑杆合金试样,用SEM、XRD、布氏硬度计和万能力学试验机对比分析硬质合金的组织、相组成、抗弯强度和布氏硬度。结果表明,与冷压烧结工艺相比,低温热压+高温无压烧结制备W-Ni-Cu合金的组织较致密、晶粒细小。冷压烧结W-Ni-Cu合金组织中的脆性相、孔隙与脆性界面相使其发生沿晶断裂,抗弯强度较低而布氏硬度较高。低温热压+高温无压烧结制备W-Ni-Cu合金组织中的韧性相、韧性界面相、细小晶粒与低孔隙率均提高其抗弯强度并降低布氏硬度,主要发生穿晶断裂。  相似文献   

7.
采用旋转化学气相沉积法和真空热压烧结工艺原位制备了综合性能优良的石墨烯-铜基复合材料。利用拉曼光谱仪、扫描电子显微镜和光学显微镜等仪器, 并通过测试材料维氏硬度、导电性和导热性, 分析了复合粉体的结构和形貌以及石墨烯添加对复合材料组织和性能的影响。结果表明, 在旋转化学气相沉积过程中, 通过改变甲烷气体的浓度(由0.17%提高到0.67%), 结合真空热压烧结工艺, 成功制备出石墨烯含量为0.015%和0.026%的铜基复合材料。2种复合材料均接近完全致密(≥99.0%); 铜基体晶粒尺寸由于石墨烯的添加而明显细化:纯铜块体材料的平均晶粒直径约为46.8 μm, 而石墨烯含量为0.015%和0.026%的复合材料的平均晶粒直径分别为22.7和17.9 μm; 复合材料的硬度显著提高, 相比纯铜样品均增长了约30%; 随着石墨烯含量增加, 复合材料导电性和导热性逐渐降低, 但下降幅度较小, 与纯铜样品接近。  相似文献   

8.
采用三维混料及高能球磨工艺制备WC-10Co混合粉,通过压制烧结工艺制备WC-10Co硬质合金,用SEM、EDS和XRD测试分析硬质合金组织结构。结果表明:与混合工艺制备粉末相比,球磨工艺制备的粉末产生细化、变形及均匀包裹,粉末分布更均匀;制备硬质合金的组织主要由WC、Co、η和γ相组成;球磨粉末在烧结过程中形成较均匀液相,可改善因三维混合粉末分布不均导致的W、C元素在Co中的过分溶解,抑制WC脱碳,并且较细的WC和Co颗粒使形核点显著增加,促使晶粒细化,洛氏硬度、抗弯强度增大。  相似文献   

9.
采用三维混料及高能球磨工艺制备WC-10Co混合粉,通过压制烧结工艺制备WC-10Co硬质合金,用SEM、EDS和XRD测试分析硬质合金组织性能。结果表明,与混合工艺制备粉末相比,球磨工艺制备的粉末产生细化、变形及均匀包裹,粉末分布更均匀。制备硬质合金的组织主要由WC、钴、η相和γ相组成。球磨粉末在烧结过程中形成较均匀液相,可改善因三维混合粉末分布不均导致的钨和碳在钴中的过分溶解,抑制WC脱碳,并且较细的WC和钴颗粒使形核点显著增加,促使晶粒细化,硬度、抗弯强度增大。  相似文献   

10.
纳米Al2O3/Cu复合材料的制备及其摩擦学特性   总被引:1,自引:0,他引:1       下载免费PDF全文
周广宏 《煤炭学报》2009,34(2):262-266
首先采用化学镀铜工艺制备了Cu包覆纳米Al2O3复合粉体,分析了预处理工艺和化学镀工艺对复合粉体的组成及形貌的影响;再将均匀包覆的复合粉体与铜粉充分混合后,利用热压烧结成型工艺制备了纳米Al2O3弥散强化铜基复合材料,并对质量分数为2.5%的纳米Al2O3铜基复合材料的微观组织、摩擦磨损性能进行了研究.结果表明:通过镀前预处理工艺及对传统镀液配方的调整,成功地在纳米Al2O3颗粒表面包覆了厚度均匀可控的镀铜层,从而提高了纳米Al2O3颗粒与铜基体间的界面结合力,并实现了纳米Al2O3颗粒在复合材料基体中均匀分布.采用化学镀铜包覆技术制得的纳米Al2O3/Cu复合材料有较好的抗摩擦磨损性能,复合材料的摩擦因数较小,其相对耐磨性与钝铜相比提高了近1倍.  相似文献   

11.
高炉渣是由炼铁高炉产生的一种工业废渣,其中含有CaO、Al2O3、SiO2等硅酸盐成分和少量Fe2O3、TiO2、ZrO2等析晶形核剂。高炉渣在855℃热处理1 h,可形核析出1 μm左右的Ca2Al2SiO7微晶,这表明高炉渣具有较高的析晶活性。向ZTA中添加质量分数为4%的高炉渣,1 550℃烧结30 min,低温下ZTA陶瓷的力学性能明显提升,抗弯强度和断裂韧性分别为650 MPa和6.03 MPa·m1/2,比相同温度下未添加高炉渣时分别提高了15%和14.2%,烧结温度降低了50℃以上。颗粒细化的高炉渣掺入ZTA陶瓷基体,烧结过程中高炉渣产生的液相促进了Al2O3棒晶的生长,受力过程中棒晶的拔出和裂纹的偏转有利于ZTA陶瓷力学性能的提升;高炉渣在高温下的析晶增强了ZTA陶瓷的晶界强度,进一步提高了材料的力学性能。   相似文献   

12.
以铁尾矿为原料,粉煤灰为成分校正剂制备高强轻质陶粒。利用热分析仪(TG-DSC)和X射线衍射仪(XRD)分析了原料的热反应过程,确定陶粒烧制温度范围。设计正交试验研究了成分配比、烧制温度、高温区升温速率和保温时间对陶粒堆积密度、表观密度、吸水率和筒压强度的影响,优化陶粒制备工艺。结果显示,陶粒的原料配比对堆积密度和表观密度影响较大,而烧制温度对吸水率和筒压强度影响较大。料球中Al2O3含量为17%,以10℃/min的速度升温至1 000℃,再以25℃/min的速度升温至1 210℃,保温30 min,所制备陶粒堆积密度888.20 kg/m3,表观密度为1 907.14 kg/m3,筒压强度为8.34 MPa,1 h吸水率为5.04%,满足国标GB/T 17431.1—2010中规定的900级轻质高强陶粒性能要求,为高硅铁尾矿的综合利用提供了一条新途径。   相似文献   

13.
以煤矸石为主要原料,CaO为助熔剂,采用直接烧结法制备微晶玻璃。探讨了热处理制度对微晶玻璃物相组成、吸水率、体积密度、线收缩率等物化性能的影响。结果表明:本试验所用煤矸石主要含SiO2 40%~50%、Al2O3 25%~40%、Fe2O3 5%~10%,在1 280℃下焙烧60 min,所制备的微晶玻璃主晶相为莫来石。同时,其体积密度和线收缩率最大,分别达2.155 g/cm3和17.911%,吸水率为0.302%。该工艺为煤矸石的资源化利用提供了一种途径。   相似文献   

14.
焙烧对Ti-PILCs结构和物化性能的影响   总被引:1,自引:1,他引:0  
以高纯钠基蒙脱石为基质材料[1], 以钛酸正丁酯[Ti(n-C4H9O)9]为钛源, 采用Sol-gel法制备得到含钛蒙脱石纳米复合材料(Ti-PILCs)。对Ti-PILCs进行了焙烧研究, 并应用XRD、BET、TG-DSC、SEM和TEM等检测手段进行表征, 分析表明: 经600 ℃、900 ℃ 焙烧后Ti-PILCs的d001值分别由焙烧前的3.74 nm下降到3.67 nm、3.34 nm, 比表面积由409.1 m2/g下降S500 ℃=374.3 m2/g、S700 ℃=362.5 m2/g。焙烧后的Ti-PILCs存在大量的中孔, 氧化物柱子较均匀分布, 热稳定性超过900 ℃。  相似文献   

15.
高能球磨制备纳米WC-Co复合粉末工艺的优化   总被引:3,自引:0,他引:3  
采用正交试验法对高能球磨制备纳水WC-Co复合粉的工艺参数进行了优化.试验表明,球料比为15:1、球径8mm和12mm,的球比1:1,球磨介质为12ml无水乙醇及球磨机转速为250r/min,有利于细化WC-Co复合粉末。  相似文献   

16.
为实现河道底泥的无害化和资源化利用,以河道底泥为主要原料,膨润土、淀粉、石灰石为辅料,采用高温烧结法制备底泥陶粒。通过单因素试验探讨膨润土、淀粉、石灰石用量对陶粒性能的影响,采用正交试验优化陶粒的原料配比和焙烧工艺,并通过XRD、SEM分析陶粒的物相组成、微观结构。结果表明,适宜的原料配比为:底泥、膨润土、淀粉及石灰石的质量比70∶30∶10∶13,最佳的工艺条件为预热温度400 ℃、预热时间10 min、焙烧温度1 000 ℃、焙烧时间15 min。在该条件下制得的陶粒堆积密度为725.52 kg/m3、表观密度为1 326 kg/m3、吸水率为25.00%、抗压强度为3.32 MPa、除磷率为98.69%。底泥陶粒表面粗糙,孔隙结构丰富,吸水渗透性好,除磷率较高,是一种可以应用于水处理的陶粒滤料。  相似文献   

17.
以粉煤灰和煤矸石为主要原料,采用添加造孔剂法烧制出粉煤灰多孔陶粒,研究了原料中粉煤灰与煤矸石的配比、烧结温度对多孔陶粒的烧结外观、气孔率、抗压碎强度、晶相组成和微观结构的影响。实验结果表明,随着煤矸石添加量和烧结温度升高,气孔率下降,抗压碎强度增大;当成孔剂添加量30%、粉煤灰与煤矸石质量比46.2∶19.8、烧结温度1 120 ℃、保温时间30 min时,所得多孔陶粒晶相组成稳定,抗压碎强度较高,内部孔隙发达,且多为三维贯通的通孔结构。  相似文献   

18.
碱渣和细铁尾矿属污染性大宗固体废弃物,为了确定以它们为主要原料制备高强环保陶粒的可能性,进行了核壳结构烧结陶粒的制备工艺条件研究,并对主要工艺条件下烧结陶粒的矿物成分进行了分析。结果表明:①铁尾矿和碱渣用量增大,煅烧温度升高,煅烧时间延长,核壳结构烧结陶粒的吸水率、膨胀率均升高,筒压强度和堆积密度总体均降低,只是在较低煅烧温度、较短煅烧时间情况下核壳结构烧结陶粒的筒压强度均较低。②铁尾矿用量为70%,碱渣用量为6%,煅烧温度为1 140 ℃,煅烧时间为90 min情况下,核壳结构烧结陶粒的吸水率为1.25%、膨胀率为1.24%、堆积密度为870.3 kg/m3、筒压强度为10.67 MPa,符合国家标准中高强陶粒的要求(吸水率<10%、堆积密度等级<900 kg/m3、筒压强度等级>6.50 MPa)。③该陶粒碎磨产品(0.075~0 mm)氯离子渗出率为0.000 1%,远低于标准中I类砂≤0.01%的要求。④核壳结构烧结陶粒核芯配合料中的碱渣是促进蓝晶石形成的重要原料,蓝晶石是影响该陶粒强度的关键性矿物,升高煅烧温度和延长煅烧时间均能促进陶粒中含氯化合物的形成,防止掺加碱渣的陶粒中氯离子的渗出。  相似文献   

19.
采用烘干炉-预热炉-烧成炉"三炉联用"模拟烧结机生产陶粒的方式,研究不同焙烧温度和烧成时间对赤泥陶粒宏观、微观形貌结构及强度、吸水率、堆积密度等基本物理力学性能的影响.结果表明,预热温度550℃、预热时间15 min条件下,优化焙烧温度为1115℃、烧成时间15 min.制备的赤泥陶粒整体陶质化特征显著,表层呈典型玻化...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号