首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human prion diseases are fatal neurodegenerative maladies that may present as sporadic, genetic, or infectious illnesses. The sporadic form is called Creutzfeldt-Jakob disease (CJD) while the inherited disorders are called familial (f) CJD, Gerstmann-Straussler-Scheinker (GSS) disease and fatal familial insomnia (FFI). Prions are transmissible particles that are devoid of nucleic acid and seem to be composed exclusively of a modified protein (PrPSc). The normal, cellular PrP (PrPC) is converted into PrPSc through a posttranslational process during which it acquires a high beta-sheet content. In fCJD, GSS, and FFI, mutations in the PrP gene located on the short arm of chromosome 20 are the cause of disease. Considerable evidence argues that the prion diseases are disorders of protein conformation.  相似文献   

2.
1. Prion diseases include kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Str?ussler-Scheinker disease (GSS), and fatal familia insomnia (FFI) of humans, as well as scrapie and bovine spongiform encephalopathy (BSE) of animals. 2. All these disorders involve conversion of the normal, cellular prion protein (PrPC) into the corresponding scrapie isoform (PrPSc). PrPC adopts a structure rich in alpha-helices and devoid of beta-sheet, in contrast to PrPSc, which has a high beta-sheet content and is resistant to limited digestion by proteases. That a conformational transition features in the conversion of PrPC into PrPSc implies that prion diseases are disorders of protein conformation. 3. This concept has been extended by our studies with heat shock proteins (Hsp), many of which are thought to function as molecular chaperones. We found that the induction of some Hsps but not others was profoundly altered in scrapie-infected cells and that the distribution of Hsp73 is unusual in these cells. 4. Whether the conversion of PrPC into PrPSc is assisted by molecular chaperones, or if the accumulation of the abnormally folded PrPSc is complexed with Hsps remains to be established.  相似文献   

3.
Linkage of the prion protein (PrP) and scrapie incubation time genes in mice provided strong evidence for the central role of PrP in determining susceptibility to prion disorders. Considerable evidence now argues that the prion protein and incubation time genes are identical. The mouse prion protein gene (Prn-p) may act both quantitatively and qualitatively in modulating prion incubation time. Differences at positions 108 and 189 between PrP-A and PrP-B allotypes can place constraints on interaction between the normal cellular and the scrapie-specific isoforms of PrP (PrPC and PrPSc), although the supply of PrPC available for post-translational conversion to PrPSc can also influence incubation time. Results using transgenic (Tg) mice in studies on scrapie 'strains' or isolates suggest that incubation time characteristics of scrapie isolates can be explained by these two properties of PrP. The final section of this report discusses the novel finding that uninoculated Tg mice overexpressing wild-type (wt) PrP transgenes spontaneously develop a late-onset degenerative neuromyopathy, broadening the spectrum of prion diseases and providing new information on PrP function in both normal and pathological states.  相似文献   

4.
Recombinant scrapie-like prion protein of 106 amino acids is soluble   总被引:1,自引:0,他引:1  
The N terminus of the scrapie isoform of prion protein (PrPSc) can be truncated without loss of scrapie infectivity and, correspondingly, the truncation of the N terminus of the cellular isoform, PrPC, still permits conversion into PrPSc. To assess whether additional segments of the PrP molecule can be deleted, we previously removed regions of putative secondary structure in PrPC; in the present study we found that deletion of each of the four predicted helices prevented PrPSc formation, as did deletion of the stop transfer effector region and the C178A mutation. Removal of a 36-residue loop between helices 2 and 3 did not prevent formation of protease-resistant PrP; the resulting scrapie-like protein, designated PrPSc106, contained 106 residues after cleavage of an N-terminal signal peptide and a C-terminal sequence for glycolipid anchor addition. Addition of the detergent Sarkosyl to cell lysates solubilized PrPSc106, which retained resistance to digestion by proteinase K. These results suggest that all the regions of proposed secondary structure in PrP are required for PrPSc formation, as is the disulfide bond stabilizing helices 3 and 4. The discovery of PrPSc106 should facilitate structural studies of PrPSc, investigations of the mechanism of PrPSc formation, and the production of PrPSc-specific antibodies.  相似文献   

5.
Prions   总被引:1,自引:0,他引:1  
Prions are unprecedented infectious pathogens that cause a group of invariably fatal neurodegenerative diseases by an entirely novel mechanism. Prion diseases may present as genetic, infectious, or sporadic disorders, all of which involve modification of the prion protein (PrP). Bovine spongiform encephalopathy (BSE), scrapie of sheep, and Creutzfeldt-Jakob disease (CJD) of humans are among the most notable prion diseases. Prions are transmissible particles that are devoid of nucleic acid and seem to be composed exclusively of a modified protein (PrPSc). The normal, cellular PrP (PrPC) is converted into PrPSc through a posttranslational process during which it acquires a high beta-sheet content. The species of a particular prion is encoded by the sequence of the chromosomal PrP gene of the mammals in which it last replicated. In contrast to pathogens carrying a nucleic acid genome, prions appear to encipher strain-specific properties in the tertiary structure of PrPSc. Transgenetic studies argue that PrPSc acts as a template upon which PrPC is refolded into a nascent PrPSc molecule through a process facilitated by another protein. Miniprions generated in transgenic mice expressing PrP, in which nearly half of the residues were deleted, exhibit unique biological properties and should facilitate structural studies of PrPSc. While knowledge about prions has profound implications for studies of the structural plasticity of proteins, investigations of prion diseases suggest that new strategies for the prevention and treatment of these disorders may also find application in the more common degenerative diseases.  相似文献   

6.
The fundamental event in prion disease is thought to be the posttranslational conversion of the cellular prion protein (PrPC) into a pathogenic isoform (PrPSc). The occurrence of PrPC on the cell surface and PrPSc in amyloid plaques in situ or in aggregates following purification complicates the study of the molecular events that underlie the disease process. Monoclonal antibodies are highly sensitive probes of protein conformation which can be used under these conditions. Here, we report the rescue of a diverse panel of 19 PrP-specific recombinant monoclonal antibodies from phage display libraries prepared from PrP deficient (Prnp0/0) mice immunized with infectious prions either in the form of rods or PrP 27-30 dispersed into liposomes. The antibodies recognize a number of distinct linear and discontinuous epitopes that are presented to a varying degree on different PrP preparations. The epitope reactivity of the recombinant PrP(90-231) molecule was almost indistinguishable from that of PrPC on the cell surface, validating the importance of detailed structural studies on the recombinant molecule. Only one epitope region at the C terminus of PrP was well presented on both PrPC and PrPSc, while epitopes associated with most of the antibodies in the panel were present on PrPC but absent from PrPSc.  相似文献   

7.
8.
The prion, the transmissible agent that causes spongiform encephalopathies such as scrapie, bovine spongiform encephalopathy and Creutzfeldt-Jakob disease, is believed to be devoid of nucleic acid and to be identical to PrPSc (prion protein: scrapie form), a modified form of the normal host protein PrPC (prion protein: cellular form) which is encoded by the single copy gene Prnp. The 'protein only' hypothesis proposes that PrPSc, when introduced into a normal host, causes the conversion of PrPC into PrPSc; it therefore predicts that an animal devoid of PrPC should be resistant to prion diseases. The authors generated homozygous Prnp(o/o) ('PrP knockout') mice and showed that, after inoculation with prions, these mice remained free from scrapie for at least two years while wild-type controls all died within six months. There was no propagation of prions in the Prnp(o/o) animals. Surprisingly, heterozygous Prnp(o/+) mice, which express PrPC at about half the normal level, also showed enhanced resistance to scrapie despite high levels of infectious agent and PrPSc in the brain at an early stage. After introduction of murine PrP transgenes, Prnp(o/o) mice became highly susceptible to mouse--but not to hamster--prions, while the insertion of Syrian hamster PrP transgenes rendered the mice susceptible to hamster prions but much less susceptible to mouse prions. These complementation experiments enabled the application of reverse genetics. The authors prepared animals transgenic for genes encoding PrP with amino terminal deletions of various lengths and found that PrP that lacks 48 amino proximal amino acids (which comprise four of the five octa repeats of PrP) is still biologically active.  相似文献   

9.
Transmissible spongiform encephalopathies (TSEs) are lethal, infectious disorders of the mammalian nervous system. A TSE hallmark is the conversion of the cellular protein PrPC to disease-associated PrPSc (named for scrapie, the first known TSE). PrPC is protease-sensitive, monomeric, detergent soluble, and primarily alpha-helical; PrPSc is protease-resistant, polymerized, detergent insoluble, and rich in beta-sheet. The "protein-only" hypothesis posits that PrPSc is the infectious TSE agent that directly converts host-encoded PrPC to fresh PrPSc, harming neurons and creating new agents of infection. To gain insight on the conformational transitions of PrP, we tested the ability of several protein chaperones, which supervise the conformational transitions of proteins in diverse ways, to affect conversion of PrPC to its protease-resistant state. None affected conversion in the absence of pre-existing PrPSc. In its presence, only two, GroEL and Hsp104 (heat shock protein 104), significantly affected conversion. Both promoted it, but the reaction characteristics of conversions with the two chaperones were distinct. In contrast, chemical chaperones inhibited conversion. Our findings provide new mechanistic insights into nature of PrP conversions, and provide a new set of tools for studying the process underlying TSE pathogenesis.  相似文献   

10.
Conversion of the cellular prion protein (PrPC) into the pathogenic isoform (PrPSc) is the fundamental event underlying transmission and pathogenesis of prion diseases. To control the expression of PrPC in transgenic (Tg) mice, we used a tetracycline controlled transactivator (tTA) driven by the PrP gene control elements and a tTA-responsive promoter linked to a PrP gene [Gossen, M. and Bujard, H. (1992) Proc. Natl. Acad. Sci. USA 89, 5547-5551]. Adult Tg mice showed no deleterious effects upon repression of PrPC expression (>90%) by oral doxycycline, but the mice developed progressive ataxia at approximately 50 days after inoculation with prions unless maintained on doxycycline. Although Tg mice on doxycycline accumulated low levels of PrPSc, they showed no neurologic dysfunction, indicating that low levels of PrPSc can be tolerated. Use of the tTA system to control PrP expression allowed production of Tg mice with high levels of PrP that otherwise cause many embryonic and neonatal deaths. Measurement of PrPSc clearance in Tg mice should be possible, facilitating the development of pharmacotherapeutics.  相似文献   

11.
Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human transmissible spongiform encephalopathies (prion diseases) are proposed for the following disease entities: CJD--sporadic, iatrogenic (recognised risk) or familial (same disease in 1st degree relative): spongiform encephalopathy in cerebral and/or cerebellar cortex and/or subcortical grey matter; or encephalopathy with prion protein (PrP) immunoreactivity (plaque and/or diffuse synaptic and/or patchy/perivacuolar types). Gerstmann-Str?ussler-Scheinker disease (GSS) (in family with dominantly inherited progressive ataxia and/or dementia): encephalo(myelo)pathy with multicentric PrP plaques. Familial fatal insomnia (FFI) (in member of a family with PRNP178 mutation): thalamic degeneration, variable spongiform change in cerebrum. Kuru (in the Fore population). Without PrP data, the crucial feature is the spongiform change accompanied by neuronal loss and gliosis. This spongiform change is characterised by diffuse or focally clustered small round or oval vacuoles in the neuropil of the deep cortical layers, cerebellar cortex or subcortical grey matter, which might become confluent. Spongiform change should not be confused with non-specific spongiosis. This includes status spongiosus ("spongiform state"), comprising irregular cavities in gliotic neuropil following extensive neuronal loss (including also lesions of "burnt-out" CJD), "spongy" changes in brain oedema and metabolic encephalopathies, and artefacts such as superficial cortical, perineuronal, or perivascular vacuolation; focal changes indistinguishable from spongiform change may occur in some cases of Alzheimer's and diffuse Lewy body diseases. Very rare cases might not be diagnosed by these criteria. Then confirmation must be sought by additional techniques such as PrP immunoblotting, preparations for electron microscopic examination of scrapie associated fibrils (SAF), molecular biologic studies, or experimental transmission.  相似文献   

12.
The scrapie prion protein (PrPSc) is the major, and possibly the only, component of the infectious prion; it is generated from the cellular isoform (PrPC) by a conformational change. N-terminal truncation of PrPSc by limited proteolysis produces a protein of approximately 142 residues designated PrP 27-30, which retains infectivity. A recombinant protein (rPrP) corresponding to Syrian hamster PrP 27-30 was expressed in Escherichia coli and purified. After refolding rPrP into an alpha-helical form resembling PrPC, the structure was solved by multidimensional heteronuclear NMR, revealing many structural features of rPrP that were not found in two shorter PrP fragments studied previously. Extensive side-chain interactions for residues 113-125 characterize a hydrophobic cluster, which packs against an irregular beta-sheet, whereas residues 90-112 exhibit little defined structure. Although identifiable secondary structure is largely lacking in the N terminus of rPrP, paradoxically this N terminus increases the amount of secondary structure in the remainder of rPrP. The surface of a long helix (residues 200-227) and a structured loop (residues 165-171) form a discontinuous epitope for binding of a protein that facilitates PrPSc formation. Polymorphic residues within this epitope seem to modulate susceptibility of sheep and humans to prion disease. Conformational heterogeneity of rPrP at the N terminus may be key to the transformation of PrPC into PrPSc, whereas the discontinuous epitope near the C terminus controls this transition.  相似文献   

13.
BACKGROUND: A conformational change seems to represent the major difference between the scrapie prion protein (PrPSc) and its normal cellular isoform (PrPC). We recently proposed a set of four helix bundle models for the three-dimensional structure of PrPC that are consistent with a variety of spectroscopic and genetic data. RESULTS: We report a plausible model for the three-dimensional structure of a biologically important fragment of PrPSc. The model of residues 108-218 was constructed by an approach that combines computational techniques and experimental data. The proposed structures of this fragment of PrPSc display a four-stranded beta-sheet covered on one face by two alpha-helices. Residues implicated in the prion species barrier are found to cluster on the solvent-accessible surface of the beta-sheet of one of the models. This interface could provide a structural template that would assist the conversion of PrPC to PrPSc and hence direct prion propagation. CONCLUSIONS: Molecular models of the PrP isoforms should prove very useful in developing structural hypotheses about the process by which PrPC is transformed into PrPSc, the mechanisms by which PrP gene mutations give rise to the inherited human prion diseases, and the species barrier that seems to protect humans from animal prions. It seems likely that PrPC represents a kinetically trapped intermediate in PrP folding.  相似文献   

14.
Prions cause transmissible and genetic neurodegenerative diseases. Infectious prion particles are composed largely, if not entirely, of an abnormal isoform of the prion protein (PrPSc), which is encoded by a chromosomal gene. Although the PrP gene is single copy, transgenic mice with both alleles of the PrP gene ablated develop normally. A post-translational process, as yet unidentified, converts the cellular prion protein (PrPC) into PrPSc. Scrapie incubation times, neuropathology and prion synthesis in transgenic mice are controlled by the PrP gene. Mutations in the PrP gene are genetically linked to development of neurodegeneration. Transgenic mice expressing mutant PrP spontaneously develop neurological dysfunction and spongiform neuropathology. Investigations of prion diseases using transgenesis promise to yield much new information about these once enigmatic disorders.  相似文献   

15.
There is currently no effective therapy for human prion diseases. However, several polyanionic glycans, including pentosan sulfate and dextran sulfate, prolong the incubation time of scrapie in rodents, and inhibit the production of the scrapie isoform of the prion protein (PrPSc), the major component of infectious prions, in cultured neuroblastoma cells. We report here that pentosan sulfate and related compounds rapidly and dramatically reduce the amount of PrPC, the non-infectious precursor of PrPSc, present on the cell surface. This effect results primarily from the ability of these agents to stimulate endocytosis of PrPC, thereby causing a redistribution of the protein from the plasma membrane to the cell interior. Pentosan sulfate also causes a change in the ultrastructural localization of PrPC, such that a portion of the protein molecules are shifted into late endosomes and/or lysosomes. In addition, we demonstrate, using PrP-containing bacterial fusion proteins, that cultured cells express saturable and specific surface binding sites for PrP, many of which are glycosaminoglycan molecules. Our results raise the possibility that sulfated glycans inhibit prion production by altering the cellular localization of PrPC precursor, and they indicate that endogenous proteoglycans are likely to play an important role in the cellular metabolism of both PrPC and PrPSc.  相似文献   

16.
Creutzfeldt-Jakob disease (CJD) is a transmissible neurodegenerative disorder characterized by the accumulation of proteinase-resistant prion protein (PrP) in the brain. Pathological changes in the cerebellum are common and include atrophy of the granular layer, spongiform change in the molecular layer, and astrocytic gliosis of the cerebellar cortex and white matter. In most cases of sporadic CJD immunohistochemistry for PrP shows widespread granular deposits of the scrapie isoform of the prion protein (PrPSc) in the cerebellar cortex. In a minority of cases plaque-like deposits of PrPSc are detectable. The genetic background of this phenomenon was investigated in 47 cases of sporadic CJD. Immunohistochemistry using antibodies against PrP was performed in brain autopsy specimens. A genetic analysis of the prion protein gene (PRNP) showed overrepresentation of homozygosity for either methionine (M/M) or valine (V/V) at the polymorphic codon 129 in CJD patients as compared to 74 controls. No significant difference in allele frequency between the 2 groups was found. Plaques or plaque-like PrPSc deposits were found in 9 cases of CJD and were associated with the presence of valine at codon 129 on at least 1 allele of PRNP. CJD patients homozygous for valine (V/V) were on an average more than 5 years younger than patients with M/M or M/V at codon 129.  相似文献   

17.
18.
The only known difference between the cellular (PrPC) and scrapie-specific (PrPSc) isoforms of the prion protein is conformational. Because disruption of PrPSc structure decreases scrapie infectivity, restoration of the disease-specific conformation should restore infectivity. In this study, disruption of PrPSc (as monitored by the loss of proteinase K resistance) by guanidine hydrochloride (GdnHCl) resulted in decreased infectivity. Upon dilution of the GdnHCl, protease resistance of PrP was restored and infectivity was regained. The addition of copper facilitated restoration of both infectivity and protease resistance of PrP in a subset of samples that did not renature by the simple dilution of the GdnHCl. These data demonstrate that loss of scrapie infectivity can be a reversible process and that copper can enhance this restoration of proteinase K resistance and infectivity.  相似文献   

19.
Prion diseases are thought to be caused by the conversion of the normal, or cellular, prion protein (PrPC)(PrPres). There are three familial forms of human prion disease, Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler-Scheinker syndrome, and fatal familial insomnia (FFI) which are all expressed at advanced age despite the congenital presence of the mutant prion protein (PrPM). The cellular mechanisms that result in the age-dependent conversion of PrPM into PrPres and the unique phenotypes associated with each PrPM are unknown. FFI and a familial type of Creutzfeldt-Jakob disease (CJD178), share the D178N mutation in the PrP gene but have distinct phenotypes linked to codon 129, the site of a methionine/valine polymorphism (129M/V). We analyzed PrP processing in cells transfected with constructs reproducing the FFI and CJD178 genotypes. The D178N mutation results in instability of the mutant PrP which is partially corrected by N-glycosylation. Hence, only the glycosylated forms of PrPM reach the cell surface whereas the unglycosylated PrPM is also under-represented in the brain of FFI patients validating the cell model. These results offer new insight into the effect of the D178N mutation on the metabolism of the prion protein.  相似文献   

20.
The central causative event in infectious, familial, and sporadic forms of prion disease is thought to be a conformational change that converts the cellular isoform of the prion protein (PrPC) into the scrapie isoform (PrPSc) that is the primary constituent of infectious prion particles. To provide a model system for analyzing the mechanistic details of this critical transformation, we have previously prepared cultured Chinese hamster ovary cells that stably express mouse PrP molecules carrying mutations homologous to those seen in familial prion diseases of humans. In the present work, we have analyzed the kinetics with which a PrP molecule containing an insertional mutation associated with Creutzfeldt-Jakob disease acquires several biochemical properties characteristic of PrPSc. Within 10 min of pulse labeling, the mutant protein undergoes a molecular alteration that is detectable by a change in Triton X-114 phase partitioning and phenyl-Sepharose binding. After 30 min of labeling, a detergent-insoluble and protease-sensitive form of the protein appears. After a chase period of several hours, the protein becomes protease-resistant. Incubation of cells at 18 degrees C or treatment with brefeldin A inhibits acquisition of detergent insolubility and protease resistance but does not affect Triton X-114 partitioning and phenyl-Sepharose binding. Our results support a model in which conversion of mutant PrPs to a PrPSc-like state proceeds in a stepwise fashion via a series of identifiable biochemical intermediates, with the earliest step occurring during or very soon after synthesis of the polypeptide in the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号