首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
基于聚类和主成分分析的神经网络预测模型   总被引:8,自引:0,他引:8  
提出一种基于聚类和主成分分析的神经网络模型,用于高炉运行指标的实时预测.首先采用谱系聚类将特性分散的样本划分成不同的子类,然后采用主成分分析方法对影响目标数据的众多变量进行降维处理,在此基础上,构建了高炉运行指标的神经网络预测模型,大大改善了预报的精度和效率.通过对采集的高炉数据进行测试,表明本文提出方法的有效性.  相似文献   

2.
基于主成分分析的神经网络入侵检测仿真研究   总被引:2,自引:0,他引:2  
单冬红  赵伟艇 《计算机仿真》2011,28(6):153-156,279
研究入网络安全的入侵检测问题.针对网络入侵数据的高维、非线性和冗余特点,传统降维和检测方法检测率低的难题,为了提高网络安全性,提出一种基于主成分分析的遗传神经网络网络入侵检测方法.首先对网络入侵的数据维数利用主成分分析进行降维处理,消除数据之间的冗余信息,简化神经网络的输入,然后采用遗传算法对神经网络的权值进行优化,加...  相似文献   

3.
基于主成分的遗传神经网络股票指数预测研究   总被引:7,自引:3,他引:7       下载免费PDF全文
数据预测在金融投资领域占有重要地位,预测中输入变量的选取影响着预测的速度和精度,传统方法选取输入变量主观性较强,预测效果欠佳。将遗传算法与BP网络结合,利用GA的全局搜索优化BP网络的结构参数,有效克服BP算法的局部收敛等问题。使用主成分分析法选取输入变量,并将GA—BP混合建模应用于沪市综合指数预测中。实验结果表明,该方法改善了预测精度,达到了较好的预测效果。  相似文献   

4.
基于主成分分析和BP 神经网络的气体识别方法研究   总被引:17,自引:3,他引:17  
本文将主成分分析法与BP算法相结合应用于气体传感器阵列信号的处理,并以一个由4个SnO2气体传感器组成的阵列为例,对其受到不同浓度的汽车、酒精二元气体的响应信号进行了分析,结果表明,主成分分析能够在保留测试数据量大量信息的前提下,给数据有效降维和预分类,以消除样本间的相关性。然后,再将所产生的新的样本空间作为BP网络输入,使之减少网络的输入数,简化网络结构,并在保持相同正确率的前提下,大大提高网络的学习速率。  相似文献   

5.
基于主成分分析的股票指数预测研究   总被引:9,自引:0,他引:9       下载免费PDF全文
预测中输入变量的选取影响预测的速度和精度,传统方法选取输入变量主观性强,预测效果欠佳。本文使用主成分分析法选取输入变量,计算量小,预测效果更好。以沪市综合指数预测为例进行仿真计算,仿真结果表明了使用主成分分析法选取输入变量的有效性,它明显减少了预测时间,改善了预测精度。  相似文献   

6.
提出基于神经网络的二维主成分分析人脸识别算法.通过图像的预处理改善了图像的质量,提高了图像的亮度和对比度,降低了图像的维度,然后利用二维主成分分析方法进行人脸关键特征的提取,并将该特征作为神经网络的输入,用改进的神经网络作为分类器,并通过实验证明了算法的有效性和可行性.  相似文献   

7.
供应商选择是企业进行决策的重要内容,也直接影响着企业竞争力。在科学合理的构建供应商评价指标体系的基础上,首先对供应商评价的数据进行主成分分析,然后建立基于BP神经网络的供应商评价模型,最后以实例验证。这两种方法相结合不仅简化了模型结构,而且较好的克服评价指标主观性强的问题,为供应商选择提供了一种新的、实用的评价方法。  相似文献   

8.
共享单车数据预测是近十年来城市交通出行大数据的重要关注点。本文建立基于主成分的BP神经网络模型,较好地预测了共享单车租借数据,并与全因素的BP神经网络模型进行对比分析。结果表明基于主成分分析的BP神经网络模型,在精度损失较小的条件下,大幅降低了输入变量的维度,提高了模型训练和预测的效率,对于多因素大数据预测分析,能兼顾效率与精度。  相似文献   

9.
提出了一种新型的柴油机故障诊断方法,该方法使用主成分分析( PCA)法对故障样本降维,有效提取故障样本主要特征,在此基础上,将其作为输入使用自组织映射( SOM)神经网络进行训练得到故障识别网络。400组模拟故障数据的测试表明,两者结合的方法能有效提高网络的训练速度,获得满意的故障识别率。  相似文献   

10.
煤自然发火期是衡量煤自燃特性的一个重要参数,也是指导井下防灭火工作的重要参考依据。结合主成分分析与神经网络的优点,提出了基于主成分分析的神经网络煤自然发火期预测模型。采用主成分分析法对原始输入变量进行预处理,选择输入变量的主成分作为神经网络输入,一方面减少了输入变量的维数,消除了各输入变量的相关性;另一方面提高了网络的收敛性和稳定性,同时也简化了网络的结构。通过实例验证,基于主成分的神经网络比一般神经网络训练精度更高,学习时间更短,预测效果更优。  相似文献   

11.
基于输入训练神经网络的非线性主元分析(PCA)能够有效地提取过程变量的非线性主元,但是存在主元的个数不能通过网络训练确定,且各个主元重要程度在神经网络中无法区分等缺点,本文提出一种分级输入自调整神经网络,并进一步提出基于此网络的非线性PCA,通过多级输入自调整神经网络,将主元按顺序找出,且根据主元对过程数据的预测误差定量地确定出主元的个数,克服了上述缺点.  相似文献   

12.
结合主元分析(PCA)和径向基函数(RBF)神经网络,建立了地下水动态模拟与软测量预测模型。通过主元分析法提取主要成分,实现数据预处理;将选取的主要成分作为RBF神经网络的输入;采用k均值聚类算法确定RBF网络隐含层参数,并用递进最小二乘法确定输出层权值。仿真结果表明,该模型优化了网络结构,提高了预测精度。  相似文献   

13.
何正风  孙亚民 《计算机工程》2012,38(19):175-178
针对高维、小样本的分类问题,提出2个重要的准则,用于估计RBF单元的初始宽度.采用主成分分析方法把训练样本集投影到特征脸空间,以减少维数,用Fisher线性判别式产生一组最具判别性的特征,使不同类间的训练数据尽可能地分开,而同一类的样本尽可能地靠近.实验结果证明,该算法在分类的错误率及学习的效率上都表现出较好的性能.  相似文献   

14.
介绍了主成分分析法神经网络的基本原理,对瑞培林片剂进行了测定,回收率令人满意,讨论了此法在复方制剂多组分同时测定中的优越性,并研究了网络拓扑结构、学习速率等对结果的影响。  相似文献   

15.
针对中长期电力负荷预测受经济、人口、天气、政策的影响密切的问题,为了保证预测的准确性和快速性,应当将这些影响因素全部考虑进来作为预测模型的输入。首先通过主分量分析法在保证不丢失输入信息的情况下将输入的维数降低,然后使用遗传算法优化网络的权值和阈值,最后用L—M贝叶斯正则化BP算法训练网络,并与传统的只考虑经济因素的预测方法的训练结果进行了比较。通过《重庆统计年鉴》统计的数据仿真,结果表明本文提出的预测方法的预测精度更高。  相似文献   

16.
广泛应用的第一主成分是对数据集的一维线性最优描述,主曲线是第一主成分的非线性推广。线性主成分分析是一种线性分析方法,而数据通常是非线性的。用线性方法分析非线性数据在分析能力上常常是受限的。为此在对线性主成分分析非线性数据研究的基础上,提出了一种新的非线性成分分析方法,即主曲线成分分析。该方法从数据本身出发进行非线性分析,强调非参数特性,能有效地建模非线性数据。实现主曲线成分分析时,采用了改进的神经网络建模方法,该建模方法以其较强的近似性能很好地表达了非线性关系。仿真实验结果表明,主曲线成分分析能很好地解决非线性主成分问题,应用前景广阔。  相似文献   

17.
基于神经网络的模糊自适应PID控制方法   总被引:51,自引:0,他引:51  
提出一种基于BP神经网络的模糊自适应PID控制器。该控制器综合模糊控制、神经网络与PID调节各自的优点,既具有模糊控制的简单和有效的非线性控制作用,又具有神经网络的学习和适应能力,同时具备PID控制的广泛适应性,仿真实验表明该控制器对模型、环境具有较好的适应能力和较强的鲁棒性。  相似文献   

18.
为解决PSO-FCM聚类算法针对多聚类问题,性能不足,容易陷入局部最优解,影响多聚类结果的准确度.提出一种基于PCA优化的PSO-FCM聚类算法,通过引入PCA分析方法,在粒子的各维度上设定不同的移动权重,降低粒子的敏感度,合理的控制粒子各维度上移动的速度,有效的降低粒子各维度上粒子无约束,位于多个聚类群交界处的粒子过分敏感,移动到错误的聚类的可能性增加.本文简要介绍了PSO-FCM算法的相关情况,详细介绍了本文的优化算法,最后通过实验证明,本文提出的优化算法在多个数据集上结果总体优于其他算法.  相似文献   

19.
裴鑫  李平  孙丽敏 《控制工程》2006,13(4):361-363
针对过程控制中被控对象常具有非线性、不确定性及参数时变等复杂因素,而难以建立精确的数学模型的情况,提出了一种基于快速学习算法的模糊神经网络自适应预测控制方案。该方案用神经网络作辨识器,模糊神经网络作控制器来实现非线性系统的自适应预测控制。为了克服传统的梯度下降法收敛速度慢、容易陷入局部极小值的缺点,该方案采用递推最小二乘法训练模糊神经网络。仿真结果表明,该方案可以实现模糊控制和神经网络的优势互补,对不确定非线性系统具有很好的控制效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号