首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Most superblock-based NAND flash storage systems employ a high-speed write buffer to enhance their writing performance. The main objective is to bind data of adjacent addresses as much as possible in order to transform random data into sequential data, which then facilitates interleaving in the storage system. We have designed a new superblock-based buffer scheme for NAND flash storage systems that improves on traditional schemes. For buffer management, a series of lists need to be specified to monitor the dataflow changes in the current state of the buffered data and the NAND flash memory in order to maximize interleaving during the flush operation. Experimental results show that the proposed scheme achieves higher write speed performance in almost all configurations, with greater than 50% speedup in some cases. Our proposed flash-aware write buffer (FAWB) scheme achieves this higher write performance with a required buffer space of only 1/4th–1/8th that of other schemes, resulting in higher efficiency.  相似文献   

2.
Solid state disks (SSDs) are becoming one of the mainstream storage devices due to their salient features, such as high read performance and low power consumption. In order to obtain high write performance and extend flash lifespan, SSDs leverage an internal DRAM to buffer frequently rewritten data to reduce the number of program operations upon the flash. However, existing buffer management algorithms demonstrate their blank in leveraging data access features to predict data attributes. In various real-world workloads, most of large sequential write requests are rarely rewritten in near future. Once these write requests occur, many hot data will be evicted from DRAM into flash memory, thus jeopardizing the overall system performance. In order to address this problem, we propose a novel large write data identification scheme, called Prober. This scheme probes large sequential write sequences among the write streams at early stage to prevent them from residing in the buffer. In the meantime, to further release space and reduce waiting time for handling the incoming requests, we temporarily buffer the large data into DRAM when the buffer has free space, and leverage an actively write-back scheme for large sequential write data when the flash array turns into idle state. Experimental results demonstrate that our schemes improve hit ratio of write requests by up to 10%, decrease the average response time by up to 42% and reduce the number of erase operations by up to 11%, compared with the state-of-the-art buffer replacement algorithms.  相似文献   

3.
Similar to traditional NAND flash memory, triple-level cell (TLC) flash memory is used as secondary storage to meet the fast growing demands on storage capacity. TLC flash memory exhibits attractive features such as shock resistance, high density, low cost, non-volatility and low access latency natures. However, TLC flash memory also has some extra limitations, such as write disturbance, low performances and very limited cycles compared to single-level cell (SLC) flash memory.In this paper, we propose a workload-aware flash translation layer, named Balloon-FTL, for the TLC/SLC dual-mode flash memory, to improve performance and lifespan of the system. We first build a workload identifier module with genetic algorithm to dynamically allocate TLC/SLC capacity based on different workloads, and produce the suitable data allocation to achieve a balanced write distribution in flash memory with low memory access cost. The basic idea is to classify metadata/userdata according to their access pattern, and allocate low-latency SLC and high-density TLC mode blocks for write-intensive metadata and a large quantities userdata, respectively. We then propose a special hybrid mapping strategy for the TLC/SLC dual-mode flash memory to improve the performance. Experimental results show that Balloon-FTL can effectively improve the performance and lifespan of the TLC/SLC dual-mode flash memory in embedded systems.  相似文献   

4.
Redundant array of independent SSDs (RAIS) is generally based on the traditional RAID design and implementation. The random small write problem is a serious challenge of RAIS. Random small writes in parity-based RAIS systems generate significantly more pre-reads and writes which can degrade RAIS performance and shorten SSD lifetime. In order to overcome the well-known write-penalty problem in the parity-based RAID5 storage systems, several logging techniques such as Parity Logging and Data Logging have been put forward. However, these techniques are originally based on mechanical characteristics of the HDDs, which ignore the properties of the flash memory. In this article, we firstly propose RAISL, a flash-aware logging method that improves the small write performance of RAIS storage systems. RAISL writes new data instead of new data and pre-read data to the log SSD by making full use of the invalid pages on the SSD of RAIS. RAISL does not need to perform the pre-read operations so that the original characteristics of workloads are kept. Secondly, we propose AGCRL on the basis of RAISL to further boost performance. AGCRL combines RAISL with access characteristic to guide read and write cost regulation to improve the performance of RAIS storage systems. Our experiments demonstrate that the RAISL significantly improves write performance and AGCRL improves both of write performance and read performance. AGCRL on average outperforms RAIS5 and RAISL by 39.15% and 16.59% respectively.  相似文献   

5.
Flash memories are one of the best media to support portable and desktop computers’ storage areas. Their features include non-volatility, low power consumption, and fast access time for read operations, features which are sufficient to present flash memories as major database storage components for portable computers. However, we need to improve traditional index management schemes based on B-Tree due to the relatively slow characteristics of flash memory operations compared to RAM memory. In order to achieve this goal, we propose a new index management scheme based on a compressed hot-cold clustering called CHC-Tree. The CHC-Tree-based index management scheme improves index operation performance by compressing the flash index nodes and clustering the hot-cold segments. The cold cluster compression techniques using unused free area in index node reduces the number of slow write operations in index node insert/delete processes. Our performance evaluation shows that our scheme significantly reduces the write operation overheads, improving the index update performance of B-Tree by 21.9%.  相似文献   

6.
In NAND flash memory, once a page program or block erase (P/E) command is issued to a NAND flash chip, the subsequent read requests have to wait until the time-consuming P/E operation to complete. Preliminary results show that the lengthy P/E operations increase the read latency by 2× on average. This increased read latency caused by the contention may significantly degrade the overall system performance. Inspired by the internal mechanism of NAND flash P/E algorithms, we propose in this paper a low-overhead P/E suspension scheme, which suspends the on-going P/E to service pending reads and resumes the suspended P/E afterwards. Having reads enjoy the highest priority, we further extend our approach by making writes be able to preempt the erase operations in order to improve the write latency performance. In our experiments, we simulate a realistic SSD model that adopts multi-chip/channel and evaluate both SLC and MLC NAND flash as storage materials of diverse performance. Experimental results show the proposed technique achieves a near-optimal performance on servicing read requests. The write latency is significantly reduced as well. Specifically, the read latency is reduced on average by 46.5% compared to RPS (Read Priority Scheduling) and when using write–suspend–erase the write latency is reduced by 13.6% relative to FIFO.  相似文献   

7.
Tree index structures are crucial components in data management systems. Existing tree index structure are designed with the implicit assumption that the underlying external memory storage is the conventional magnetic hard disk drives. This assumption is going to be invalid soon, as flash memory storage is increasingly adopted as the main storage media in mobile devices, digital cameras, embedded sensors, and notebooks. Though it is direct and simple to port existing tree index structures on the flash memory storage, that direct approach does not consider the unique characteristics of flash memory, i.e., slow write operations, and erase-before-update property, which would result in a sub optimal performance. In this paper, we introduce FAST (i.e., Flash-Aware Search Trees) as a generic framework for flash-aware tree index structures. FAST distinguishes itself from all previous attempts of flash memory indexing in two aspects: (1) FAST is a generic framework that can be applied to a wide class of data partitioning tree structures including R-tree and its variants, and (2) FAST achieves both efficiency and durability of read and write flash operations through memory flushing and crash recovery techniques. Extensive experimental results, based on an actual implementation of FAST inside the GiST index structure in PostgreSQL, show that FAST achieves better performance than its competitors.  相似文献   

8.
非易失性存储器具有接近内存的读写速度,可利用其替换传统的存储设备,从而提升存储引擎的性能。但是,传统的存储引擎通常使用通用块接口读写数据,导致了较长的 I/O 软件栈,增加了软件层的读写延迟,进而限制了非易失性存储器的性能优势。针对这一问题,该文以 Ceph 大数据存储系统为基础,研究设计了基于非易失性存储器的新型存储引擎 NVMStore,通过内存映射的方式访问存储设备,根据非易失性存储器的字节可寻址和数据持久化特性,优化数据读写流程,从而减小数据写放大以及软件栈的开销。实验结果表明,与使用非易失性存储器的传统存储引擎相比,NVMStore能够显著提升 Ceph 的小块数据读写性能。  相似文献   

9.
利用页面重构与数据温度识别的闪存缓存算法   总被引:1,自引:0,他引:1  
基于闪存的固态盘(SSD)具有比磁盘更加优越的性能,并且在桌面系统中逐渐替代磁盘.但是,尽管在SSD中嵌入了DRAM作为缓存,闪存在不断写入的过程中也可能产生不稳定的写性能,主要是因为逻辑页写入时会频繁引发非覆盖写和垃圾回收操作.针对此问题,提出了一种叫作PRLRU的新型闪存缓存管理方法,通过页面重构机制以及数据温度识...  相似文献   

10.
An SSD generally has a small memory, called cache buffer, to increase its performance and the frequently accessed data are maintained in this cache buffer. These cached data must periodically write back to the NAND Flash memory to prevent the data loss due to sudden power-off, and it should immediately flush all dirty data items into a non-volatile storage media (i.e., NAND Flash memory), when receiving a flush command, while the flush command is supported in Serial ATA (SATA) and Serial Attached SCSI (SAS). Thus, a flush command is an important factor to give significant impact on SSD performance.In this paper, we have investigated the impact of a flush command on SSD performance and have conducted in-depth experiments with versatile workloads, using the modified FlashSim simulator. Our performance measurements using PC and server workloads provide several interesting conclusions. First, a cache buffer without a flush command could improve SSD performance as a cache buffer size increases, since more requested data could be handled in the cache buffer. Second, our experiments have revealed that a flush command might give a negative impact on SSD performance. The average response time per request with a flush command is getting worse compared to not supporting the flush command, as cache buffer size increases. Finally, we have proposed the backend flushing scheme to nullify the negative performance impact of the flush command. The backend flushing scheme first writes the requested data into a cache buffer and sends the acknowledgment of the request completion to a host system. Then, it writes back the data in the cache buffer to NAND Flash memory. Thus, the proposed scheme could improve SSD performance since it might reduce the number of the dirty data items in a cache buffer to write back to NAND Flash memory.All these results suggest that a flush command could give a negative impact on SSD performance and our proposed backend flushing scheme could improve the SSD performance while supporting a flush command.  相似文献   

11.
Flash memory has critical drawbacks such as long latency of its write operation and a short life cycle. In order to overcome these limitations, the number of write operations to flash memory devices needs to be minimized. The B-Tree index structure, which is a popular hard disk based index structure, requires an excessive number of write operations when updating it to flash memory. To address this, it was proposed that another layer that emulates a B-Tree be placed between the flash memory and B-Tree indexes. This approach succeeded in reducing the write operation count, but it greatly increased search time and main memory usage. This paper proposes a B-Tree index extension that reduces both the write count and search time with limited main memory usage. First, we designed a buffer that accumulates update requests per leaf node and then simultaneously processes the update requests of the leaf node carrying the largest number of requests. Second, a type of header information was written on each leaf node. Finally, we made the index automatically control each leaf node size. Through experiments, the proposed index structure resulted in a significantly lower write count and a greatly decreased search time with less main memory usage, than placing a layer that emulates a B-Tree.  相似文献   

12.
The flash memory solid-state disk (SSD) is emerging as a killer application for NAND flash memory due to its high performance and low power consumption. To attain high write performance, recent SSDs use an internal SDRAM write buffer and parallel architecture that uses interleaving techniques. In such architecture, coarse-grained address mapping called superblock mapping is inevitably used to exploit the parallel architecture. However, superblock mapping shows poor performance for random write requests. In this paper, we propose a novel victim block selection policy for the write buffer considering the parallel architecture of SSD. We also propose a multi-level address mapping scheme that supports small-sized write requests while utilizing the parallel architecture. Experimental results show that the proposed scheme improves the I/O performance of SSD by up to 64% compared to the existing technique.  相似文献   

13.
HF-Tree:一种闪存数据库的高更新性能索引结构   总被引:1,自引:0,他引:1  
随着电子技术的发展,闪存作为一种新型的电子存储设备具有高速的访问速度和无机械延迟的特性.但是由于闪存高昂的写操作代价,传统的基于磁盘的索引结构如果直接应用在闪存上会导致极差的更新性能.提出一种新颖的索引结构HF-Tree,通过组提交、更新合并以及多级延迟的方式来提高更新性能.HF-Tree能够有效地克服闪存和现有基于磁盘索引之间的不匹配性的问题.通过和经典的BFTL及IPL索引的性能比较,实验结果充分显示了HF-Tree优越的更新和查询性能.此外HF-Tree能够有效地减少擦除次数,从而延长闪存的使用寿命.  相似文献   

14.
Phase change memory (PCM) is a promising candidate to replace DRAM as main memory, thanks to its better scalability and lower static power than DRAM. However, PCM also presents a few drawbacks, such as long write latency and high write power. Moreover, the write commands parallelism of PCM is restricted by instantaneous power constraints, which degrades write bandwidth and overall performance. The write power of PCM is asymmetric: writing a zero consumes more power than writing a one. In this paper, we propose a new scheduling policy, write power asymmetry scheduling (WPAS), that exploits the asymmetry of write power. WPAS improveswrite commands parallelism of PCM memory without violating power constraint. The evaluation results show that WPAS can improve performance by up to 35.5%, and 18.5% on average. The effective read latency can be reduced by up to 33.0%, and 17.1% on average.  相似文献   

15.
Flash memory is widely used in embedded devices and enterprise storage systems. Currently, flash-based storage devices usually use a flash translation layer (FTL) to cope with the special features of flash memory. Many methods for the design and implementation of the FTL have been proposed, such as BAST (block-associative sector translation), FAST (fully associative sector translation), and IPL (inpage logging), of which IPL has been demonstrated to have the best performance. However, IPL offers little consideration to reducing merge operations that consequently result in the degradation of the overall performance of flash-memory storage systems. We propose an improvement to IPL, called adaptive IPL (AIPL). The idea of adaptive IPL is to make the log region in a block resizable, therefore a hot block (i.e., a write-intensive block) will use a large log region so as to absorb more page updates and in turn reduce the merge operations, while a cold block, i.e., a block rarely written to, will use a small log region. This is realized by first detecting the update pattern of a block and then presenting an updatepattern-based algorithm to dynamically adjust the log region size of a newly allocated block. We conduct experiments on TPC-C traces and synthetic traces and compare the performance of AIPL with other competitors in terms of merge count, write count and elapsed time. The results demonstrate that compared with IPL, AIPL can reduce merge operations by 65% and write operations by 54% on average.  相似文献   

16.
NAND flash-based storage devices (NFSDs) are widely employed owing to their superior characteristics when compared to hard disk drives. However, NAND flash memory (NFM) still exhibits drawbacks, such as a limited lifetime and an erase-before-write requirement. Along with effective software management, the implementation of a cache buffer is one of the most common solutions to overcome these limitations. However, the read/write performance becomes saturated primarily because the eviction overhead caused by limited DRAM capacity significantly impacts overall NFSD performance. This paper therefore proposes a method that hides the eviction overhead and overcomes the saturation of the read/write performance. The proposed method exploits the new intra-request idle time (IRIT) in NFSD and employs a new data management scheme. In addition, the new pre-store eviction scheme stores dirty page data in the cache to NFMs in advance. This reduces the eviction overhead by maintaining a sufficient number of clean pages in the cache. Further, the new pre-load insertion scheme improves the read performance by frequently loading data that needs to be read into the cache in advance. Unlike previous methods with large migration overhead, our scheme does not cause any eviction/insertion overhead because it actually exploits the IRIT to its advantage. We verified the effectiveness of our method, by integrating it into two cache management strategies which were then compared. Our proposed method reduced read latency by 43% in read-intensive traces, reduced write latency by 40% in write-intensive traces, and reduced read/write latency by 21% and 20%, respectively, on average compared to NFSD with a conventional write cache buffer.  相似文献   

17.
持久性内存具有非易失性、可字节寻址、随机读写速度快、能耗低以及可扩展性强等优良特性,为大数据存储和处理提供了新的机遇.然而,持久性内存系统的故障一致性问题为其广泛推广应用带来挑战.现有一致性保证的研究工作通常以增加额外读写为代价,对持久性内存系统的性能和寿命在时间和空间维度产生了一定的影响.为了降低该影响,提出一种耐久...  相似文献   

18.
NAND flash memory has become the major storage media in mobile devices, such as smartphones. However, the random write operations of NAND flash memory heavily affect the I/O performance, thus seriously degrading the application performance in mobile devices. The main reason for slow random write operations is the out‐of‐place update feature of NAND flash memory. Newly emerged non‐volatile memory, such as phase‐change memory, spin transfer torque, supports in‐place updates and presents much better I/O performance than that of flash memory. All these good features make non‐volatile memory (NVM) as a promising solution to improve the random write performance for NAND flash memory. In this paper, we propose a non‐volatile memory for random access (NVMRA) scheme to utilize NVM to improve the I/O performance in mobile devices. NVMRA exploits the I/O behaviors of applications to improve the random write performance for each application. Based on different I/O behaviors, such as random write‐dominant I/O behavior, NVMRA adopts different storing decisions. The scheme is evaluated on a real Android 4.2 platform. The experimental results show that the proposed scheme can effectively improve the I/O performance and reduce the I/O energy consumption for mobile devices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
NAND flash memory has become the mainstream storage medium for both enterprise high performance computers and embedded systems. However, over the past several decades, the storage primitives that access secondary storage have remained unchanged, forcing NAND flash memory to serve merely as a block device like hard disk drive. Recently, several emerging storage primitives have been presented to explore the potential value of non-volatile memory devices. Although these primitives can significantly boost the access performance by providing virtual to logical address mappings, they still suffer from large RAM footprint to maintain the address mapping table and require further support for update operations.This paper presents ESP to optimize E merging S torage P rimitives with virtualization for flash memory storage systems. We propose two optimization strategies, virtual duplication and mapping prefetching to solve the critical issues in existing emerging storage primitives. The objective is to reduce unnecessary flash memory accesses and keep RAM footprint of address mapping table well under control. We have evaluated ESP on an embedded development platform. Experimental results show that ESP can significantly improve the write/read performance and reduce over 30% of garbage collection operations.  相似文献   

20.
In general, NAND flash memory has advantages in low power consumption, storage capacity, and fast erase/write performance in contrast to NOR flash. But, main drawback of the NAND flash memory is the slow access time for random read operations. Therefore, we proposed the new NAND flash memory package for overcoming this major drawback. We present a high performance and low power NAND flash memory system with a dual cache memory. The proposed NAND flash package consists of two parts, i.e., an NAND flash memory module, and a dual cache module. The new NAND flash memory system can achieve dramatically higher performance and lower power consumption compared with any conventionM NAND-type flash memory module. Our results show that the proposed system can reduce about 78% of write operations into the flash memory cell and about 70% of read operations from the flash memory cell by using only additional 3KB cache space. This value represents high potential to achieve low power consumption and high performance gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号