首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of studies of the interrelations between the mechanical characteristics of aluminum alloys applied in rocket and spacecraft engineering and electrical conductivity are presented. The conductivity was measured with a BЭ-26H instrument. The requirements for upgrading the conductivity-measuring device aimed at a further development of the methods for testing of the mechanical characteristics are formulated.  相似文献   

2.
The emissivity of a silicon wafer under various conditions was theoretically and experimentally investigated. A quantitative relationship between the ratio of p-polarized to s-polarized radiances, and the polarized emissivity was obtained, irrespective of the emissivity change of silicon wafers due to oxide film thickness under wide variations of impurity concentration. We propose a new radiation thermometry method that can measure both the temperature and the spectral polarized emissivity of a silicon wafer, and we estimate the uncertainty of these measurements. Currently, the expanded uncertainty of the temperature measurement is estimated to be 3.52 K (2k) and 3.80 (2k) for p-polarization and s-polarization, respectively, at temperatures above 900 K.  相似文献   

3.
The frequency dependency of Rayleigh surface wave is investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in two kinds of degraded specimens by scuffing or corrosion. Then, the frequency dependency is compared with the residual stress distribution or the corrosion-fatigue characteristics for the scuffed or corroded specimens, respectively. The width of the backward radiation profile increases with the increase of the variation in residual stress distribution for the scuffed specimens. In the corroded specimens, the profile width decreases with the increase of the effective aging layer thickness and is inversely proportional to the exponent, m, in the Paris’ law that can predict the crack size increase due to fatigue. The result observed in this study demonstrates high potential of backward radiated ultrasound as a tool for nondestructive evaluation of subsurface gradient of material degradation generated by scuffing or corrosion.  相似文献   

4.
5.
In terms of resolution and measuring accuracy, the grating interferometers that have appeared on the market during the past few years are often superior to He-Ne laser interferometers operating in air under workshop conditions. Several specific advantages such as good stability under changing ambient air conditions and the ability to match the thermal expansion coefficient to individual applications by means of the choice of the the scale carrier material are leading to increased use of these systems in high-precision measurement. This paper describes the operating principle and characteristics of grating interferometers as well as some measuring systems that have been realized based on this technology.  相似文献   

6.
高精度电阻在线测量方法研究   总被引:1,自引:0,他引:1  
余水宝  王霄  陈希 《仪器仪表学报》2006,27(Z2):1247-1248
为了解决电子产品检验中的高精度电阻在线测量,提出了基于差分隔离法的电阻在线测量新方法,给出了新颖的程控激励源和程控差分放大器电路.该方法从根本上消除了以往隔离技术激励信号源内阻不为零和旁路电阻对测量精度的影响,测量精度和系统量程均提高了约一个数量级.  相似文献   

7.
瞬态平面热源(Transient plane source,TPS)法是一种近年来发展起来的用于测量材料导热系数的方法.在测量过程中,加热功率受到探头引线传热的影响,进而会影响导热系数的测量准确度.针对这个问题,本文研究了测量过程中探头引线热损失对加热功率的影响,推导了热损失的数学计算公式,并提出了相应的修正模型.利用hot disk热常数分析仪对不同材料进行了一系列测量实验.实验结果表明引线热损失对测量的影响随着测量材料以及测试探头尺寸的不同而发生变化.当材料的导热系数大于0.2 W/(m·K)时,探头引线热损失的影响小于0.16%,可以忽略不计;但对于低导热系数材料的测量,对引线热损失进行补偿可以有效地提高导热系数的测量准确度.  相似文献   

8.
Magnetic flux leakage testing (MFLT), which measures the distribution of a magnetic field on a magnetized specimen by using a magnetic sensor such as a Hall sensor, is an effective nondestructive testing (NDT) method for detecting surface cracks on magnetized ferromagnetic materials. A scan-type magnetic camera, based on the principle of MFLT, uses an inclined Hall sensor array on a printed circuit board (PCB) to detect small cracks at high speed. However, the wave forms appear in a direction perpendicular to the scan because the sensors are bonded at different gradients and heights on the PCB despite careful soldering. In this paper, we propose linearly integrated Hall sensors (LIHaS) on a wafer to minimize these waves and to improve the probability of crack detection. A billet specimen is used to determine the effectiveness of the LIHaS in multiple crack detection. This paper was recommended for publication in revised form by Associate Editor Joo Ho Choi Prof. Jinyi Lee was born in Korea in 1968. He received the bachelor degree in mechanical design from Chonbuk University, Jeonju, Korea, in 1992. Also he received the master and Ph.D degree in mechanical and aeronautics & space engineering from Tohoku university, Sendai, Japan, in 1995 and 1998, respectively. He was a Researcher from 1998 to 2000 with the Tohoku university, Iwate university, Iwate Techno-Foundation and Saitama university, Japan. From 2000 to 2003, he worked for Lacomm Co., Ltd. and Gloria Techniques, Korea, as a researcher. In 2003, he was a lecturer with the Chosun university, Gwangju, Korea. Since 2005, he has been an Assistance Professor, Chosun university. His research interests are in application of magneto-optical film, laser and CCD line scan sensor, and development of magnetic camera. He is the author or coauthor of fifteen patents and over 50 scientific papers. Jiseong Hwang was born in Republic of Korea in 1979. He received the B.S and M.S degree in control and instrumentation engineering in 2005 and 2006, respectively, from the Chosun University, Gwangju, korea, where he is currently working toward the Ph.D. degree. His research interests are NDT and Evaluation, Magnetic camera. Jongwoo Jun was born in Korea in 1974. He received the bachelor degree in electronics engineering from Inje University, Kimhae, Korea, in 1999. He received the master degree in electronics engineering from Changwon University, Changwon, Korea, in 2005. Also he is currently working toward the Ph.D. degree in information & communication engineering from Chosun University, Gwangju, Korea. He worked for Lacomm Co., Ltd. and Gloria Techniques from 1999 to 2005, Korea, as a researcher. His research interests are development of magnetic camera, NDT and evaluation. Dr. Seho Choi was born in Korea in 1964. He received bachelor degree in the department of electrical and electronic engineering from Kyungpook National University, Daegu, Korea, in 1987. And he received master degree in the department of elec trical and electronic engineering from Korea Advanced Institute of Science and Technology in 1989. He received Ph.D. degree in the department of electrical and electronic engineering from the University of Sheffield in the U.K. in 2001. He had been worked for Agency for Defense Development as a Researcher from 1989 to 1992, Korea. Since 1993, he has been worked for POSCO Research Lab. as a principal researcher. His main research activities are developing Surface Defect Inspection System for hot and cold rolled steel strip, hot wire rod, and hot slab. He is also interested in developing Internal Defect Detection System for steel products by using Ultra-sonic and magnetic camera techniques. His major is image processing to detect tiny defect in high background noise image. He published many scientific papers as the author or coauthor.  相似文献   

9.
李琳  陈文芗 《仪器仪表学报》2007,28(12):2256-2259
在电导率的测量中,为减小极化作用的影响,交流电源的频率越高越好,但频率提高的同时电容作用的影响也随之增强,因此,选择合适的频率是提高测量精度的关键。本文提出了一种在电导率测量中如何选择合适的信号测量源工作频率的方法,在恒流源驱动下,判断电导池输出电压导数可自动确定信号测量源工作频率。本文从理论上对该方法进行了分析,并给出实现的硬件电路和实验结果。  相似文献   

10.
为了克服传统超声电机测控系统参数调控不灵活、特性测试分析不全面、控制算法效率低等问题,本文介绍了一种能对超声电机主要机电参数进行测量和控制的实验系统。依据超声电机参数特点与输入输出特性提出了测控系统总体方案。针对变预压力特性与温度特性难以快速获取的问题,设计了以电动缸为出力源的预压力施加装置和以薄膜热电阻为敏感源的界面温度采集装置;针对高频激励信号难以灵活产生和实时采集的困难,设计了多参数可调的驱动与采集电路;针对电机特性测控低效、过程不够规范的问题,形成了标准化测控流程,尤其是提出了能够精细化分析瞬态特性的同步采集和控制流程。测试结果表明,本系统覆盖了超声电机主要的8项控制参数与13项状态参数,能够实现控制参数的在线精确调控与状态参数的快速测量,测试效率较传统的超声电机测控系统提高了30%,为超声电机的动力学建模、特性评估及运动控制算法研究提供了较为完善的测控手段。  相似文献   

11.
In this paper, we describe an easy-to-use method to measure the thermal conductivity of thin films based on an electrical heating/sensing mechanism and a steady-state technique. The method used relative commonly used instruments, and without any signal processing circuit, is easy to be used in such thin-film thermal conductivity measurement. The SiO2 thin-film samples, prepared by thermal oxidation, plasma enhanced chemical vapor deposition (PECVD), and E-beam evaporator, were deposited on a silicon substrate. The apparent thermal conductivity, the intrinsic thermal conductivity of SiO2 films, and the total interface thermal resistance of the heater/SiO2/silicon system were evaluated. Our data showed agreement with those data obtained from previous literatures and from the 3 omega method. Furthermore, by using a sandwiched structure, the interface thermal resistance of Cr/PECVD SiO2 and PECVD SiO2/silicon were also separately evaluated in this work. The data showed that the interface thermal resistance of Cr/PECVD SiO2 (metal/dielectric) is about one order of magnitude larger than that of PECVD SiO2/silicon (dielectric/dielectric).  相似文献   

12.
The hydrostatic spindle is widely applied in the field of high-precision machine tools, which has some advantages such as high stiffness, high rotary precision, and the high damping shock absorption. The spindle rotation error is an important index to measure the machining accuracy of machine tools. Due to the installing eccentric error of the test bar, conventional method based on the standard test bar to measure the rotation error indirectly is applied to the precision machine tools and common machine tools whose rotation error is greater than 1 μm only. In order to eliminate the installing eccentric error of the standard test bar, it presents a self-reference approach that takes the online finish turning test bar, rather than that of the standard test bar, as the measuring datum. Using the capacitive micro-displacement sensor and the LMS data acquisition equipment as the test platform, it designs a set of spindle rotation error measurement system. Then it studies the frequency domain three-point method and has the rotation error and roundness error of high-precision hydrostatic spindle separated. Experimental study shows that the rotation error and the roundness error of the spindle are 0.9 and 0.3 μm, respectively, under the circumstance of conventional standard test bar as the measuring datum. However, if it takes the online finish turning test bar as the measuring datum, the rotation error and the roundness error of the spindle are only 0.3 and 0.1 μm, respectively. The self-reference method is able to eliminate the installing eccentric error of standard test bar directly, and the measurement system has realized the accurate measurements of the rotation error and roundness error of the high-precision hydrostatic spindle.  相似文献   

13.
In order to solve the inverse solution for conductivity distribution in electrical impedance tomography, the one-step Gauss–Newton method is usually employed. Major computational time is involved in the calculation of inverse term of the Jacobian matrix and the complexity increases with the number of electrodes and finite elements. Therefore, to reduce the computational time, the inverse term is replaced with a summation term based on the eigenvalue and eigenvector in the inverse solver. In this paper, a fast inversion method using eigenvalue and eigenvector is developed to monitor the conductivity distribution. Therefore, using the proposed method the computation of inverse matrix is avoided resulting in decrease of the on-line computational time. Numerical simulations and experiments have been carried out to evaluate the performance of the proposed method.  相似文献   

14.
We propose a non-contact temperature measurement method that combines the temperature dependence of transmittance below 600 °C and radiation thermometry above 600 °C. The combined method uses a polarization technique and the Brewster angle between air and a dielectric film such as SiO2 or Si3N4 grown on silicon wafers. A prominent feature of this method is that both measurements of transmittance and radiance are performed with the same geometrical arrangement.For a semitransparent wafer, the measurement of p-polarized transmittance at the wavelengths of 1.1, 1.2 and 1.3 μm enables temperature measurement in the range from room temperature to 600 °C. For an opaque wafer above 600 °C, the p-polarized radiation thermometry at the wavelength of 4.5 μm allows the temperature measurement without the emissivity problem. The combined method with the use of transmittance and radiance is valid in the entire temperature range irrespective of variations of film thickness and resistivity.  相似文献   

15.
An automated apparatus capable of measuring the electrical conductivity and thermopower of thin films over a temperature range of 300-750 K is reported. A standard dc resistance measurement in van der Pauw geometry was used to evaluate the electrical conductivity, and the thermopower was measured using the differential method. The design of the instrument, the methods used for calibration, and the measurement procedure are described in detail. Given the lack of a standard National Institute of Standards and Technology (Gaithersburg, Md.) sample for high temperature thermopower calibration, the disclosed calibration procedure shall be useful for calibration of new instruments.  相似文献   

16.
A method of enhancing the electrical conductivity of 3,4-ethylenedioxythiophene:poly styrene sulfonate (PEDOT:PSS) by combining solvent treatment (adding high polar solvent: 5 wt% ethylene glycol) and adding a small amount of silver (Ag) nanoparticles in a solution was investigated. The main purpose of this was to apply a PEDOT:PSS conductive layer to micro-thermal devices driven by electricity and, for this, to reduce the layer thickness (for low stiffness) while maintaining necessary high electrical conductivity. Layers with thicknesses of less than about 10 μm were examined for electrical conductivity and temperature when electricity was applied. The solvent treated PEDOT:PSS had suitable electrical resistance to generate appropriate temperature properties. The added Ag nanoparticles reduced the electrical resistance by 30–70% over the measured thickness range. The electric conductivity applied with this method was 200–260 Ω−1 cm−1 for thicknesses of 1–2 μm (conductive area: 12 mm × 10 mm) and the generated temperature increase was 20–50 °C at applied voltages of 3–5 V. These characteristics are considered to be suitable to use the conductive layer as a heating element. In addition, the method we used scarcely degraded the transparency of the layer. Measurements of the conductive area in a layer with conductive atomic force microscope (AFM) indicated that the added Ag nanoparticles contributed to increasing the conductive areas and distributing them more uniformly.  相似文献   

17.
高精度太阳辐射测量系统台站试验与初步资料分析   总被引:1,自引:0,他引:1  
在原高精度太阳辐射测量系统研究的基础上,改进太阳跟踪装置,提高其运行稳定性与可靠性,使其达到业务运行的要求.将总辐射表、散射辐射表和大气长波辐射表放在跟踪太阳的装置上,利用太阳自动跟踪和遮光装置,可准确地测量太阳散射辐射.采用两短、两长波辐射测量方法,获得净全辐射测量值,改变净全辐射测量方法,提高了净全辐射测量的准确度.通过丽江和漠河气象站的比对观测,对试验资料进行了初步分析和比较,验证了高精度太阳辐射测量系统辐射测量方法的正确性.  相似文献   

18.
We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.  相似文献   

19.
1 Introduction  Withthedevelopmentofinformationtechnol ogyandtherequirementofenvironmentalprotec tion ,thinconductingfilmhasbecomemoreandmoreimportant.Ithasbeenwidelyusedasatransparentelectrode ,andaheat_reflectingglass.Inordertocontrolthequalityofthinco…  相似文献   

20.
Electrode configurations are described that can be used in measuring the electrical conductivity of a core sample and that do not require access to the core end faces. The use of these configurations eliminates the need for machining the core ends for placement of end electrodes. This is because the conductivity in the cases described is relatively insensitive to the length of the sample. We validated the measurement technique by comparing mathematical models with actual measurements that were made perpendicular and paralled to the core axis of granite samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号