首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly ordered mesoporous carbon with large accessible pores (OMC-P) was prepared by using laboratory-made poly(ethylene oxide)-b-polystyrene diblock copolymer as template via the evaporation-induced self-assembly method. The OMC-P was first used as adsorbent for removal of Cr(VI) ion from aqueous solution. Adsorption behavior was studied as a function of time, concentration of adsorbate, temperature, and pH. The kinetics of adsorption of Cr(VI) ion onto OMC-P is well fit to the pseudo-second order model. The Cr(VI) ion adsorption is favored at lower temperatures and at initial acid pH values in the equilibrium. The Freundlich and the Langmuir isotherm fit the equilibrium data satisfactorily. The influence of porosity on equilibrium adsorption capacity was investigated on three types of carbon materials, namely, OMC-P, ordered mesoporous carbon templated from amphiphilic triblock copolymer F127 (OMC-F) and commercial activated carbon (AC). The prepared OMC-P exhibits much higher adsorption performance than the other two carbons.  相似文献   

2.
Removal of U(VI) ions from aqueous solutions was investigated using synthetic akaganeite-type nanocrystals. Nanocrystals of iron oxyhydroxides were synthesized with two different methods and then compared their adsorption capacities. Akaganeite (β-FeOOH) was synthesized in the laboratory by precipitation from aqueous solution of Fe(III) chloride and different precipitating agents. The relative importance of test parameters like solution pH, contact time, temperature and concentration of adsorbate on adsorption performance of akaganeite for U(VI) ion were studied. Typical adsorption isotherms (Langmuir, Freundlich, Dubinin-Raduskevich) were determined for the mechanism of sorption process. Also the thermodynamic constants (ΔH°, ΔS° and ΔG°) were calculated. The product materials were examined by powder X-ray diffraction for crystalline phase identification and scanning electron microscope (SEM).  相似文献   

3.
A new mesoporous adsorbent for uranium removal from waste effluents was prepared, characterized, and impregnated with trioctylamine. The adsorption efficiency was investigated as a function of pH, contact time, initial uranium concentration, competing ions, solid/liquid ratio, and temperature using batch sorption techniques. The maximum adsorption capacity was 21.9 mg g–1 at pH 5. The equilibrium data fit well with the Langmuir adsorption isotherm. Kinetic study showed that the process was fast and reached equilibrium within 60 min. The kinetic data fit well with the pseudo-second-order law. Thermodynamic data show that the process is spontaneous and exothermic.  相似文献   

4.
The sorption characteristics of ordinary and oxidized sorts of synthetic (SKN) and kernel (KAU) carbons and also carbon fabric oxidized with HNO3 (AUTo) with respect to U(VI) were studied. The influence of solution pH on the sorption capacity of carbon materials with respect to uranium was elucidated. The influence of chlorine and sulfate anions on the sorption rate and sorption capacity was studied. Based on kinetic curves and sorption isotherms of uranyl ions and their derivatives, possible mechanisms of uranium adsorption with carbon sorbents were considered. It was shown that carbon sorbents can be used for treatment of aqueous media, among them drinking water, to remove U(VI) compounds.  相似文献   

5.
Ni nanoparticles have been fabricated on the surface of CMK-3 mesoporous carbon through an immersion-electrodeposition (IE) technique. Transmission electron microscopy analysis indicated that it was a facile approach to electrochemically prepare nano-sized Ni clusters. The electrocatalytic properties of Ni/CMK-3 nanocomposites electrode for hydrogen evolution reaction have been investigated by liner scanning voltammetry in alkaline solution, and high electrocatalytic activity was observed. Therefore, for the first time, we report this IE method as a new route to prepare metal/CMK-3 nanocomposites which have potential applications in the catalytic field.  相似文献   

6.
A nanocomposite of CoO and a mesoporous carbon (CMK-3) has been studied as a cathode catalyst for lithium-oxygen batteries in alkyl carbonate electrolytes. The morphology and structure of the as-prepared nanocomposite were characterized by field emission scanning electron microscopy, transmission electron microscopy and high resolution transmission electron microscopy. The electrochemical properties of the mesoporous CoO/CMK-3 nanocomposite as a cathode catalyst in lithium-oxygen batteries were studied using galvanostatic charge-discharge methods. The reaction products on the cathode were analyzed by Fourier transform infrared spectroscopy. The CoO/CMK-3 nanocomposite exhibited better capacity retention than bare mesoporous CMK-3 carbon, Super-P carbon or CoO/Super-P nanocomposite. The synergistic effects arising from the combination of CoO nanoparticles and the mesoporous carbon nanoarchitecture may be responsible for the optimum catalytic performance in lithium-oxygen batteries.   相似文献   

7.
Here we report carbon-based composites polyethylenimine-mesocarbon (PEI-CMK-3) and polyvinylamine-mesocarbon (PVA-CMK-3) that can be used to capture and rapidly release CO(2). CO(2) uptake by the synthesized composites was determined using a gravimetric method at 30 °C and 1 atm; the 39% PEI-CMK-3 composite had ~12 wt % CO(2) uptake capacity and the 37% PVA-CMK-3 composite had ~13 wt % CO(2) uptake capacity. A desorption temperature of 75 °C was sufficient for regeneration. The CO(2) uptake was the same when using 10% CO(2) in a 90% CH(4), C(2)H(6), and C(3)H(8) mixture, underscoring this composite's efficacy for CO(2) sequestration from natural gas.  相似文献   

8.
In this paper, sorption potentials of uranium ions were studied using alginate polymer beads in diluted aqueous solutions. The ability of alginate beads to adsorb uranium(VI) from aqueous solution has been studied at different optimized conditions of pH, U(VI) concentration, contact time, biomass dosage and temperature. In order to determine the adsorption characteristics, Langmuir, Freundlich, and Dubinin–Radushkevich adsorption isotherms were applied to the adsorption data. The thermodynamic parameters such as variations of enthalpy ΔH, entropy ΔS and variation of Gibbs free energy ΔG were calculated from the slope and intercept of ln Kd vs. 1/T plots. The results suggested that alginate beads could be suitable as a sorbent material for adsorption and removal of uranium ions from dilute aqueous solutions.  相似文献   

9.
Copper-supported ordered mesoporous carbon (Cu/CMK-3) was prepared by impregnating ordered mesoporous carbon (CMK-3) with CuCl2 aqueous solution. CMK-3 was served as a carrier for the continuous immobilization of Cu. The supported copper was observed to be the bivalence state, indicating that the Cu2+ ion was not reduced into cuprous species or metallic copper in the CMK-3. The BET surface area and pore volume of Cu/CMK-3 were 728 m2/g and 0.95 cm3/g, respectively. The antibacterial activities of Cu/CMK-3 were tested by means of minimal inhibitory concentration (MIC) and viable cell counting method. The results show that Cu/CMK-3 presents a good antibacterial performance against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), which indicates its potential applications as antibacterial material for microbiocides.  相似文献   

10.
王凯  张莉  高源  樊宇 《功能材料》2013,44(1):136-138
以F127为模板剂,通过模板法制备了有序介孔炭材料(OMC)。对样品进行了X射线衍射(XRD),扫描电镜(SEM)和透射电镜(TEM),研究其结构和形貌。结果表明,OMC孔道有序规则,壁宽为10nm。电化学测试表明此电极材料具有良好的电化学性能,可逆性能好。在电流密度为700mA/g的条件下,经500次循环测试,有序介孔炭的容量保持率为90.5%。  相似文献   

11.
Qin H  Zhao L  Li R  Wu R  Zou H 《Analytical chemistry》2011,83(20):7721-7728
Many diseases are characterized by the changes of either glycan structure or glycosylation site of glycoproteins. The glycan profiling can provide the overview of glycosylation in despite of the absence of the glycosylation sites, which in turn simplifies the complexity of disease diagnosis. Herein, we describe a simple method to profile the N-linked glycans by MALDI-TOF MS with the enrichment using oxidized ordered mesoporous carbon, taking advantages of the size-exclusive effect of mesopore against proteins as well as the interaction between glycans and carbon. Twenty four N-linked glycans derived from ovalbumin could be efficiently detected with high signal-to-noise (S/N) ratios and sufficient peak intensities. In the analysis of complex serum samples, 32 N-linked glycans could be profiled, and 5 (4 core-fucosylated glycans) of them were distinguished from liver cancer and healthy samples.  相似文献   

12.
选用HNO3对有序介孔碳材料进行表面改性。通过红外光谱、氮气吸-脱附等测试手段对介孔碳(OMC)和硝酸改性介孔碳(OMC-H)的结构进行表征。采用循环伏安、恒流充放电、交流阻抗等测试比较OMC和OMC-H的电化学性能。结果表明,改性后OMC-H的孔结构发生了变化,OMC的介孔孔径增大,比表面积和孔体积减小。同时,改性也改善了超级电容器的电化学性能。OMC-H单电极在1 m V/s的比电容为262 F/g,高于OMC单电极的比电容(205 F/g)。改性后OMC-H电容器的电荷转移阻抗明显减小。OMC-H电容器欧姆电压降明显小于OMC,表明硝酸改性后介孔碳电极的等效串联内阻减小。改性后OMCH电容器充放电1 500次以后,比电容趋于稳定在58F/g,相比改性前OMC电容器的49 F/g有明显的增加。  相似文献   

13.
《Materials Letters》2007,61(23-24):4627-4630
Pore surface of ordered mesoporous carbon (OMC) was coated with a thin layer of polyaniline by chemical polymerization of aniline monomers. Structure characterizations, such as N2 adsorption analysis, small angle X-ray diffraction and transmission electron microscopy, demonstrate that polyaniline is well distributed on the pore surface of OMC. As evidenced by constant current charge–discharge test, specific capacitance of polyaniline-coated ordered mesoporous carbon (PCOMC) reaches as high as 602.5 F/g, which is much higher than that of OMC, due to the incorporation of polyaniline onto the pore surface of OMC. However, the capacitive behavior deteriorated somewhat due to the narrowed pore size and extra faradiac reactions caused by the incorporation of polyaniline.  相似文献   

14.
Sandwich-type ordered mesoporous carbon/graphene nanocomposites were successfully synthesized using 2D ordered mesoporous silica/graphene nanocomposites as the hard template and an ionic liquid as a N-rich carbon source. We used an ionic liquid of 1-(3-cyanopropyl)-3-methylimidazolium dicyanamide containing nitrile groups (–CN) in the cation and anion as a carbon precursor for the preparation of the nanocomposites. Nitriles do not decompose under thermal treatment in an inert gas atmosphere, but leave significant amounts of N-rich carbon materials. The nanocomposites had a large surface area (1,316 m2·g–1), an average pore diameter of 5.9 nm, and high electrical conductivity. The nanocomposite electrode showed a high specific capacitance of 190 F·g–1 at 0.5 A·g–1 in 1 M TEABF4/AN electrolyte and a good rate capability between 0 and 2.7 V for supercapacitor (or ultracapacitor) applications.
  相似文献   

15.
The sorption performance of a modified carbon black was explored with respect to arsenic removal following batch equilibrium technique. Modification was accomplished by refluxing the commercial carbon black with an acid mixture comprising HNO(3) and H(2)SO(4). Modification resulted in the substantial changes to the inherent properties like surface chemistry and morphology of the commercial carbon black to explore its potential as sorbent. The suspension pH as well as the point of zero charge (pH(pzc)) of the material was found to be highly acidic. The material showed excellent sorption performance for the removal of arsenic from a synthetic aqueous solution. It removed approximately 93% arsenic from a 50mg/L solution at equilibration time. The modified carbon black is capable of removing arsenic in a relatively broad pH range of 3-6, invariably in the acidic region. Both pseudo-first-order and second-order kinetics were applied to search for the best fitted kinetic model to the sorption results. The sorption process is best described by the pseudo-second-order kinetic. It has also been found that intra-particle diffusion is the rate-controlling step for the initial phases of the reaction. Modelling of the equilibrium data with Freundlich and Langmuir isotherms revealed that the correlation coefficient is more satisfactory with the Langmuir model although Freundlich model predicted a good sorption process. The sorption performance has been found to be strongly dependent on the solution pH with a maximum display at pH of 5.0. The temperature has a positive effect on sorption increasing the extent of removal with temperature up to the optimum temperature. The sorption process has been found to be spontaneous and endothermic in nature, and proceeds with the increase in randomness at the solid-solution interface. The spent sorbent was desorbed with various acidic and basic extracting solutions with KOH demonstrating the best result ( approximately 85% desorption).  相似文献   

16.
We report the synthesis of ordered mesoporous carbons (OMCs) with high surface area by the variation of mass ratio of tetraethylorthosilicate (TEOS) to resol, followed by carbonization and removal of silica. The obtained OMCs were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, N2 adsorption and desorption analysis, Zeta potential and Fourier transform infrared spectroscopy. Results reveal that the OMCs were transformed from ordered to disordered structure at high mass ratio of TEOS/resol. A typical sample of OMCs possesses very high specific surface area of 1906 m2 g?1 and large pore volume of 1.8 cm3 g?1. The OMCs as adsorbent show an ultrahigh-level adsorption capacity for the removal of toxic dye Rhodamine B (1028 mg g?1) in the short contact time (60 min). The adsorption follows pseudo second-order kinetics with rate constant 2.5 × 10?4 g mg?1 min?1, showing rapid adsorption properties. The OMCs can be reused; though the adsorption capacity seems to decrease somewhat after each cycle tested over 10 reuse cycles, it might be affected by the chemisorptions. The adsorption mechanism study reveals that the adsorption proceeds with hydrogen bonding between hydrogen atom of carboxylic group at OMCs and electronegative element (nitrogen) of RhB. It is concluded that the surface area and pore volume of the OMCs is tuned by the variation of mass ratio of TEOS to resol which is also demonstrated to have ultrahigh adsorption capacity for the model RhB dye.  相似文献   

17.
以间苯二酚/甲醛制备的酚醛树脂为碳前躯体,三嵌段共聚物F127和P123作为主辅结构导向剂,采用有机-有机自组装的方法制备有序介孔炭(Ordered mesoporous carbons,简称OMCs)。采用X射线衍射仪、透射电镜和N2吸/脱附手段对所制OMCs进行表征,研究了反应时间以及主辅模板剂的比例对介孔孔道结构的影响。结果表明,随着反应时间从24h延长至72 h,介孔炭有序性先增后减;当主辅模板剂F127/P123摩尔比为0.002 7∶0.002 7时,所得介孔炭有序性较好,为P6mm型孔道结构,介孔孔容和比表面积分别为0.59 cm3/g和640.34 m2/g,平均孔径为3.68 nm.  相似文献   

18.
结构有序、双重孔隙中孔炭材料的合成与表征   总被引:7,自引:11,他引:7  
采用纳米涂层技术,以介孔分子筛SBA 15为模板,在其纳米孔道内引入糠醇/草酸溶液,经原位聚合,炭化后制得炭/SBA 15复合物。采用化学法脱除模板后制得具有规则结构的中孔炭。高分辨TEM表征结果显示该中孔炭是由纳米炭管相互联接、堆积而成,且具有六方对称结构。氮吸附结果显示其比表面积高达2000m2/g,孔径呈双峰分布。孔径相对较大的孔隙来源于SBA 15孔道经纳米涂层后所保留的孔隙;孔径相对较小的孔隙来源于SiO2移除后遗留的纳米孔空间。该方法可应用于以其他多孔氧化硅为模板制备新型纳米复合物的研究过程。  相似文献   

19.
介孔碳材料的制备及对胆红素的优越吸附特性   总被引:1,自引:0,他引:1  
以MCM-48为模板,利用模板碳化法制备了有序介孔碳材料.运用小角X射线衍射(XRD)、透射电镜(TEM)、紫外可见光谱(UV-vis)等测试方法对介孔碳材料的孔结构参数及对胆红素的吸附特性进行了表征.研究结果表明,介孔碳材料结构高度有序,为立方相Ia3d型,具有高比表面积(1438m2 g-1)、大的孔容(0.98c...  相似文献   

20.
We propose and demonstrate a new scheme to improve microwave absorption property through polyaniline (PANI)-functionalized Ni-doped ordered mesoporous carbon (OMC) by in situ polymerization method. The polymer-functionalized nanocomposites, embedding polyaniline within ordered mesoporous carbon, exhibit strong and broadband microwave absorption due to its better dielectric loss characteristic. OMC-Ni0.15/PANI exhibits an effective absorption bandwidth (i.e., reflection loss (RL) ≤ −10 dB) of 4.7 GHz and an absorption peak of −51 dB at 9.0 GHz. The absorption peak intensity and position can be tuned by controlling the thickness of the coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号