首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For composite-steel surfaces in sliding contact an anisotropic numerical contact algorithm has been developed to study the ‘layer type’ problems. An FE contact analysis was applied to evaluate the contact parameters (real contact area, contact pressure distribution and normal approach). The contact temperature rise was determined by using both a numerical thermal algorithm for stationary and a FE transient thermal technique for ‘fast sliding’ problems.The effect of a continuous transfer film layer (TFL), that had built up during wear of the PEEK matrix material on the steel counterpart, was considered. Its thickness was assumed to be t=1 μm, and its material properties were that of PEEK at room temperature or, in the case of frictional heating, at a temperature of 150°C (i.e. above the glass transition temperature of the polymer matrix).Results are presented for a spherical steel asperity, with/without TFL, sliding over composite surfaces of different fibre orientation, and in addition, for real composite-steel surfaces (based on measured surface roughness data) in sliding contact. The TFL has an effect on the contact parameters especially at higher operating temperatures (i.e. 150°C); it results in the production of a larger contact area and a lower contact pressure distribution. The contact temperature rise is clearly higher if a TFL is present. Due to the low thermal conductivity of PEEK, the TFL is close to the melting state or it even gets molten within a small vicinity of the contact area.  相似文献   

2.
A vacuum ellipsometer has been designed for probing the glass transition in thin supported polymer films. The device is based on the optics of a commercial spectroscopic phase-modulated ellipsometer. A custom-made vacuum chamber evacuated by oil-free pumps, variable temperature optical table, and computer-based data acquisition system was described. The performance of the tool has been demonstrated using 20-200 nm thick poly(methyl methacrylate) and polystyrene films coated on silicon substrates at 10(-6)-10(-8) torr residual gas pressure. Both polymers show pronounced glass transitions. The difficulties in assigning in the glass transition temperature are discussed with respect to the experimental challenges of the measurements in thin polymer films. It is found that the experimental curves can be significantly affected by a residual gas. This effect manifests itself at lower temperatures as a decreased or even negative apparent thermal coefficient of expansion, and is related to the uptake and desorption of water by the samples during temperature scans. It is also found that an ionization gauge--the standard accessory of any high vacuum system--can cause a number of spurious phenomena including drift in the experimental data, roughening of the polymer surface, and film dewetting.  相似文献   

3.
4.
Electric-heated cantilever-tip probes fabricated by micromachining techniques can be used for high-density data storage, nanopatterning, etc., where contact-scanning and thermal-plastic nanowritings are frequently implemented on the surface of a polymer thin-film such as polymethylmethacrylate (PMMA). In such kind of applications, micro-nanofriction effects, e.g., contacting-size and temperature effects of the tip/film friction system, will largely influence the performance of the applications. To elucidate the effects, present research fabricates a monolithically integrated probe array that comprises three scanning probe microscopy cantilever-tip probes with different tip radii of tens of nanometers, submicrometers and microns, respectively. The tip is enabled an electric-heating function by integrating a heating resistors on the tip. Using the tips, the tip/film friction experiment shows an obvious contacting-area effect. Within a wide temperature range, the friction signal and the normal force load exhibit a nonlinear relationship for the nanoradius tip but a linear relationship for the submicron tip. With the heated tips, the experiment directly reveals significant size effects on friction and adhesion behaviors. It is found that the glassy transition of the PMMA film can be characterized using the submicron tip, while the nanotip is suited to detect the secondary beta transition process. By fitting the experimental data into a power law with apparent friction coefficient included, the temperature-effect combined size effect of the micronano tip/polymer friction is modeled and discussed.  相似文献   

5.
This article describes the use of heated silicon atomic force microscopy probes to perform local thermal analysis (LTA) of a thin film of polystyrene. The experiments measure film softening behavior with 100 nm spatial resolution, whereas previous research on LTA used probes that had a resolution near 10 microm, which was too large to investigate some types of features. This article demonstrates four methods by which heated silicon probes can perform thermal analysis with nanoscale spatial resolution. The polystyrene softening temperature measured from nanoscale LTA techniques is 120 degrees C, compared to 100 degrees C, measured with bulk ellipsometry. The discrepancy is attributed to the thermal contact resistance at the end of the silicon probe tip, on the order of 10(7)K/W, which modulates heat flow between the tip and sample and governs the fundamental limits of this technique. The use of a silicon probe for LTA enables bulk fabrication, parallelization for high-throughput analysis, and fabrication of a sharp tip capable of nanoscale spatial resolution.  相似文献   

6.
Thermomechanical sliding contact of head disk interface (HDI) causes critical wear on the carbon film of a head slider. An improved contact model accounting for both asperity and substrate deformation is applied to analyze the HDI contact behavior, while theories of frictional heat generation and heat transfer are used to investigate the change in HDI temperature. Based on actual HDI design and operation parameters, parametric study of thermomechanical HDI contact has been performed. It was found that severe wear of head carbon film would be significantly attributed to thermal degradation of carbon material during its sliding contact.  相似文献   

7.
In this study, we investigated thermal influence on surface layer of CFRP in grinding with heat conduction analysis using grinding temperature at wheel contact area on dry and wet condition. Moreover, the thermal affected layer was analyzed through an experiment to examine the temperature of glass transition and thermal decomposition of the matrix resin that composes the CFRP used in this study. The influence of thermal effect on grinding of CFRP was verified based on observation of ground surface finish after grinding using SEM and the measurement of surface roughness. From the measurement result of DSC (Differential Scanning Calorimetry),TG-DTA (Thermogravimetry-Differential Thermal Analysis), It was found that the thermal affected layer of CFRP includes a layer in which the matrix resin is changed in quality by exceeding the glass transition temperature and a layer in which the matrix resin is thermally decomposed by exceeding the thermal decomposition temperature. In addition, it was found that the surface roughness was significantly reduced if the thermal affected layer with thermal decomposition was generated. In each grinding atmosphere, it tended to increase of grinding temperature at wheel contact area with increasing in the setting depth of cut. In the case of dry grinding, grinding temperature at wheel contact area increased up to t thermal decomposition temperature of the matrix resin. However, in the case of the wet grinding, grinding temperature at wheel contact area did not increase until thermally decomposition temperature. From the result of simulation about thermal affected layer, influence of grinding heat increased with increasing in the setting depth of cut. Ultimately, the thermal affected layer with thermal decomposition was generated in dry grinding. Moreover, from the results of SEM observation, it was confirmed that the surface finish properties deteriorated significantly due to thermal decomposition of the matrix resin in the case of Δ = 400 μm in the setting depth of cut at fiber angle θ = 0°. On the other hand, it was confirmed that the micro damage of carbon fiber was occurred in wet grinding at each setting depth of cut.  相似文献   

8.
Friction Study of a Ni Nanodot-patterned Surface   总被引:3,自引:0,他引:3  
Nanoscale frictional behavior of a Ni nanodot-patterned surface (NDPS) was studied using a TriboIndenter by employing a diamond tip with a 1 μm nominal radius of curvature. The Ni NDPS was fabricated by thermal evaporation of Ni through a porous anodized aluminum oxide (AAO) template onto a Si substrate. Surface morphology and the deformation of the NDPS were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), before and after friction/scratch testing. SEM images after scratching clearly showed that, similar to what was assumed at the macroscale, the frictional force is proportional to the real area of contact at the nanoscale. It was found that adhesion played a major role in the frictional performance, when the normal load was less than 20 μN and plastic deformation was the dominant contributor to the frictional force, when the normal load was between 60 μN and 125 μN. Surprisingly, a continuum contact mechanics model was found to be applicable to the nanoscale contact between the tip and the inhomogeneous Ni NDPS at low loads. The coefficient of friction (COF) was also found to depend on the size of the tip and was four times the COF between a 100 μm tip and the Ni NDPS. Finally, the critical shear strength of the Ni nanodots/Si substrate interface was estimated to be about 1.24 GPa.  相似文献   

9.
Nanobundles patterns can be formed on the surface of most thermoplastic polymers when the atomic force microscope (AFM)‐based nanomechanical machining method is employed to scratch their surfaces. Such patterns are reviewed as three‐dimensional sine‐wave structures. In the present study, the single‐line scratch test is used firstly to study different removal states of the polystyrene (PS) polymer with different molecular weights (MWs). Effects of the scratching direction and the scratching velocity on deformation of the PS film and the state of the removed materials are also investigated. Single‐wear box test is then employed to study the possibility of forming bundle structures on PS films with different MWs. The experimental results show that the state between the tip and the sample plays a key role in the nano machining process. If the contact radius between the AFM tip and the polymer surface is larger than the chain end‐to‐end distance, it is designated as the “cutting” state that means the area of both side ridges is less than the area of the groove and materials are removed. If the contact radius is less than the chain end‐to‐end distance, it is designated as the “plowing” state that means the area of both side ridges is larger than the area of the groove and no materials are removed at all. For the perfect bundles formation on the PS film, the plowing state is ideal condition for the larger MW polymers because of the chains’ entanglement. SCANNING 35:308‐315, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
The geometry of glass knife edges for ultramicrotomy was studied with nanoscale resolution using scanning force microscopy (SFM) in the contact mode. The local shape of the cutting edge was estimated from single line profiles of the SFM topographic images by taking into account the exact radius of the ultrasharp silicon tip. The tip radius was estimated from secondary electron micrographs recorded at low voltage by field emission scanning electron microscopy (FESEM). The radius of the investigated cutting edges was found to be in range 5–20 nm. The results obtained illustrate that the combination of SFM and high resolution FESEM provides a unique means to determine precisely the radius of glass knives.  相似文献   

11.
Results are presented of lateral force measurements using the atomic force microscope (AFM) and the surface forces apparatus (SFA). Two different probes are used in the AFM measurements; a sharp silicon nitride tip (radius R20 nm) and a glass ball (R15 m). The lateral force is measured between the (silicon nitride or glass) probe and a mica surface which has been coated by a thin lubricant film. In the SFA, a thin lubricant film separates two molecularly smooth mica surfaces (R1 cm) which are slid relative to each other. Perfluoropolyether (PFPE) and polydimethylsiloxane (PDMS) were used as the lubricant films. In the SFA where the contact diameter is largest, the PFPE film shows much lower friction than PDMS. As the size of the probe decreases, the difference in the measured friction decreases. For sharp AFM tips, no clear distinction between the tribological properties of the films can be made. Hence, the measured coefficient of friction varies according to the length scale probed, at least for small dimensions.  相似文献   

12.

Tribological properties of a silica nanoparticle-textured (SNPT) surface were investigated at the nanoscale using a nanoindenter. The sample was fabricated by spin coating chemically synthesized silica nanoparticle solution onto a silicon substrate and then annealing the substrate in an N2 environment. Environmental scanning electron microscopy (ESEM) and scanning probe microscopy (SPM) were used to characterize the morphology of the SNPT surface. Adhesion and friction experiments were performed with a diamond tip of nominal radius of curvature of 5 μ m, under contact forces of 750-1500 μ N, and with sliding speed of 0.1-2 μ m/s. The nanotribological properties of the SNPT sample were compared to those of a smooth silicon oxide film (SOF)-coated sample. The adhesion performance of the SNPT surface was found to be much better than that of the SOF surface. The coefficient of friction (COF) reduced up to 26%.

  相似文献   

13.
Substrate constraints and interfacial boundary layers in thin polystyrene films are explored with high strain rate indentations characteristic of thermomechanical terabit data storage operations. Under these impact-like conditions, the coupling of strain-rate and inertial effects leads to large plastic deformations relative to quasi-static indentations. Strain shielding is present when the plastic deformation radius exceeds 65% of the film thickness. Thereafter, deformation is restricted by the rigid substrate, giving rise to elevated rim heights and interfacial shearing. The shielding effects were alleviated with use of a modulus-matched buffer layer between the polymer film and the substrate. A non-monotonic rheological gradient in the polymer films leads to the distribution of contact pressures between two asymptotic scenarios: (i) a compliant surface with a rigid sub-surface and (ii) a rigid surface with a compliant sub-surface.  相似文献   

14.
One-dimensional radiation/conduction heat transfer model is employed to investigate thermal responses of HTSC thin-film detectors exposed to a pulse laser beam. The theoretical model includes local radiation absorption in the HTSC film based on the electromagnetic theory, thermal contact resistances at the interface between film and substrate, and nonuniform initial condition for the film/substrate temperature incurred by the Joule heating due to the bias current and inherent electrical resistance even before the radiation exposure. Using the steady-state conduction equation, the experimental resistance-temperature curve is corrected based on the real film temperatures instead of the substrate temperatures. The error involved in the estimation of the voltage jump based on the model without initial Joule heating could be significant near the transition temperature. Still there is a big discrepancy between the theoretical and experimental results, though the nonuniform initial condition model reduces the gap.  相似文献   

15.
Nanoimprint lithography (NIL) is one of the most promising technologies for nanofabrication because it can create nano- and microscale structures and devices in a cost-effective manner. In the NIL process, a mold with patterns on its surface comes in contact with a polymer film on a substrate. The patterns are transferred to the polymer film and then the mold is separated from the film. Mechanical contact between the mold and the polymer film, and between the film and the substrate, is inevitable. In some cases, during the separation process, adhesion and friction forces at the interfaces can deform and fracture the transferred patterns and detach the polymer film from the substrate. Thus, controlling the adhesion and friction between the materials in contact is very important in achieving a successful pattern transfer and making the NIL process a robust nanofabrication technique. Many theoretical and experimental research efforts have been made to clarify the tribological phenomena in NIL and to reduce defects due to adhesion and friction. This article describes the tribological problems encountered and reviews the related research.  相似文献   

16.
Yang F  Wornyo E  Gall K  King WP 《Scanning》2008,30(2):197-202
This paper investigates the thermomechanical formation and recovery of nanometer-scale indents in a shape memory polymer (SMP), studied using a heated atomic force microscope (AFM) tip and hot-stage atomic force microscopy. The material tested is a tert-butyl acrylate (tBA)-based polymer, which has a glass transition temperature of 60 degrees C. The AFM tip forms indents in the polymer in the temperature range 25-250 degrees C. The shape recovery of the indents is studied while the polymer is heated up to 100 degrees C. The temperature required for complete annealing of the indents depends upon the indentation formation conditions, with higher temperature formation corresponding to higher temperature recovery.  相似文献   

17.
This report describes an observation of alternating transitions between linear (Amontons) and non-linear friction-load behavior during Lateral Force Microscope experiments using a silicon tip sliding on a quartz surface. Initially, a transition from linear to non-linear behavior was attributed to nanoscale ‘running-in’ of the tip to form a single contact junction at the interface. Once this had occurred, a non-linear relationship between friction and applied load was observed during a number of loading and unloading cycles. For higher compressive loads, a further transition to a more linear friction-load behavior was attributed to nanoscale wear in the contact zone. Notably, when applied load was reduced below this ‘high-load’ transition point, the same non-linear friction-load behavior was again observed, but with a larger (friction per load) magnitude than seen previously. This cycle was repeated five times in these experiments, and each time, switching between non-linear and linear friction-load behavior occurred, along with a progressive increase in friction (per load) each time load was reduced below the transition point. The progressive increase in friction is attributed to an increased area of contact, caused by nanoscale wear at higher applied loads. An increase in tip size was confirmed by tip profiling before and after experiment. By progressively wearing the asperity at higher loads, the (interfacial or true) contact area, A, between the surfaces could be progressively increased, and as a result, a progressive increase in interfacial sliding friction, F f , was obtained at lower loads (according to F f = τA).  相似文献   

18.
In this work, thermal and transient effects on non‐conformal lubricated contacts are investigated through experimental analyses. Experiments between a ball and a plane surface of a disc are described. Friction coefficients and film thicknesses are measured (the film thickness only for the glass‐on‐steel contact). A paraffin base mineral oil is used as a lubricant. First experiments are carried out under steady‐state conditions. To include effects due to different thermal properties of contacting materials, a steel‐on‐steel and a glass‐on‐steel contact with different slide‐to‐roll ratios are tested. If the contacting materials have different thermal properties, as in the case of a glass‐on‐steel contact, thermal effects like the temperature–viscosity wedge action could clearly be shown. It is found that the friction coefficients are influenced by the slide‐to‐roll ratio and the thermal properties of the contacting materials. Under transient conditions, the entraining velocity is varied with a sinusoidal law. Squeeze effects explain ‘loops’ of friction and film thickness found also in previous works. The formation of friction loops is related to the measured film thickness differences. However, also under non‐steady‐state conditions, thermal effects, like the temperature–viscosity wedge action, influence the friction coefficients. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The tribological behaviour of unfilled thermoplastic polyurethane (TPU) and a polymer sphere filled (TPUG) thermoplastic polyurethane have been studied under oscillating sliding condition against cast iron as a counterpart. In the case of unfilled TPU, the wear mechanisms are dominated by particle detachment and roll formation. In principle, TPUG also showed a similar wear mechanism as that of unfilled TPU; in addition, particle pull-out and delamination are also observed. Wear volume of TPUG was significantly higher than that for the unfilled TPU and this is attributed to the different material removal processes taking place in the material during sliding. The polymer spheres as a filler material deteriorated the wear resistance of TPU because of improper adhesion and bonding of filler in the TPU matrix and therefore it contributed to more wear. In case of TPU the friction behaviour was strongly dependant on the temperature and surface roughness of the counter body. The results showed that below the glass transition temperature higher friction values are observed with higher counter body surface roughness. However, above the glass transition temperature, higher friction values are observed with a smoother surface roughness of the counter body. In case of TPUG, the friction behaviour was not significantly dependent on surface roughness of the counter body.  相似文献   

20.
Effects of thermal contact resistance between heater and susceptor, susceptor and graphite board in a MOCVD reactor on temperature distribution and film growth rate were analyzed. One-dimensional thermal resistance model considering thermal contact resistance and heat transfer area was made up at first to find the temperature drop at the surface of graphite board. This one-dimensional model predicted the temperature drop of 18K at the board surface. Temperature distribution of a reactor wall from the three-dimensional computational fluid dynamics analysis including the gap at the wafer position showed the temperature drop of 20K. Film growth rates of InP and GaAs were predicted using computational fluid dynamics technique with chemical reaction model. Temperature distribution from the three-dimensional heat transfer calculation was used as a thermal boundary condition to the film growth rate simulations. Temperature drop due to the thermal contact resistance affected to the GaAs film growth a little but not to the InP film growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号