首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
通过TC18钛合金热模拟压缩实验,得到不同变形条件下的高温变形真应力-真应变曲线.通过加工硬化和动态软化效应,分析变形参数变化对TC18钛合金应力-应变曲线形态和峰值应力的影响.不同变形条件下,TC18钛合金流变曲线呈现出相似的特征,而峰值应力对变形参数的变化却十分敏感.通过Poliak-Jonas准则,分析了不同条件下TC18钛合金在高温变形过程中的软化机制.相同温度下,动态再结晶机制主要发生在低应变速率下的高温变形过程中,并且软化机制的选择对温度不敏感.基于传统的Arrhenius型方程,针对TC18钛合金热变形过程中不同的软化机制,分别建立动态再结晶和动态回复机制下的本构方程.针对识别出的TC18合金在不同变形条件下的软化机制,通过适用的本构模型来描述TC18合金在应变为0.7时真实应力对变形温度、应变速率的响应过程.以动态再结晶为主要软化机制的变形过程,其变形激活能和应变速率敏感系数远远大于以动态回复为主的过程.  相似文献   

2.
在Gleeble 3500多功能热模拟试验机上,对高强DP980钢进行了单道次压缩实验,研究了该钢在1323~1423 K和0. 05~10 s-1变形条件下的热变形行为,分析了变形温度和变形速率对流变应力曲线的影响,揭示了变形软化机制,分析了在热变形过程中微观组织的演变规律,分阶段建立了热压缩变形抗力本构模型。结果表明:流变应力对变形温度和应变速率都很敏感,随变形温度的增加和变形速率的减小而减小,低应变速率下呈动态再结晶型软化机制;应变速率ε· 0. 1 s-1时,呈动态回复型软化机制。同一变形温度下,低应变速率易于该钢中奥氏体再结晶的启动;同一变形速率下,变形温度越高,奥氏体再结晶现象越明显。分阶段所建立的本构模型预测值与实验值的相关系数达到0. 9978,平均相对误差绝对值为2. 67%,证明此模型具有较高精度。  相似文献   

3.
通过 Gleeble-3800 热模拟试验机的热压缩实验,研究了 Ti-62A 合金在 800、850、900 和 950℃,应变速率为 0.001、0.01、0.1 和 1s-1 下的热变形行为和动态再结晶(DRX)规律。结果表明:Ti-62A 合金的流变应力受应变速率和变形温度的影响显著;流变应力随着变形温度的升高和应变速率的降低而降低;在 900~950℃、应变速率 0.01~1s-1 条件下,Ti-62A 合金的热变形应力-应变曲线属于动态回复型;该合金的热变形机制主要由位错运动控制,其动态软化机制包括晶界滑动和位错对消、攀移机制;Ti-62A 合金在热变形过程中,动态再结晶更有可能发生在较高的温度和较低的应变速率下,即 950℃ 和 0.001s-1;基于经典位错密度理论和 DRX 动力学理论,建立了加工硬化—动态回复和 DRX 软化效应的两阶段本构模型。DEFORM-3D 软件的仿真模拟结果证实,基于 DRX 软化效应的本构模型对 Ti-62A 合金在动态再结晶阶段的热变形行为的预测具有较高的准确性,能够为实际生产工艺的制定提供技术参考。  相似文献   

4.
采用等温热压缩实验,研究了一种典型镍基高温合金在1010-1160oC及0.001-1s-1条件下的高温流变行为。结果表明在合金的高温变形过程中发生了动态回复(DRV)以及动态再结晶(DRX)现象。通过深入分析不同变形条件下合金的高温流变行为,分别建立了合金在加工硬化-动态回复阶段以及动态再结晶阶段的流变应力本构方程。其中,在动态再结晶阶段,流变应力本构方程的建立是基于一种新型的动态再结晶动力学方程,该方程中引入了最大软化速率应变。此外,采用线性拟合的方法,建立了本构方程中材料常数与Zener-Hollomon参数间的函数关系。同时,通过对比分析流变应力的实测值和预测值,并计算两者之间的相关系数(R)和平均相对误差绝对值(AARE),验证了所建立本构方程的准确性,它可以精确预测所研究合金的高温流变应力。  相似文献   

5.
采用热模拟压缩实验法研究了Al-0.62Mg-0.73Si合金的热变形行为,分析了热变形过程中温度、应变速率对其流变应力影响规律,并通过构建包含应变的Arrhenius本构关系模型系统地描述了热变形参量对流变应力的影响规律。实验结果表明,在所研究的热变形参数条件下,流变应力曲线均呈现出明显的动态再结晶软化特征。数据分析结果显示应变补偿的Arrhenius本构关系模型可以较为准确地预测Al-0.62Mg-0.73Si合金的热变形流变应力。本研究结果可用于优化Al-0.62Mg-0.73Si合金热变形工艺参数,并为更为全面地研究铝合金热变形行为提供了理论参考。  相似文献   

6.
采用热力模拟试验机对Al-0.83Mg-0.59Si铝合金进行热压缩实验,研究了变形温度300~500 ℃、变形速率0.001~10 s-1下材料的动态再结晶行为。实验得到Al 0.83Mg 0.59Si合金在300~500 ℃变形时,软化机制以动态再结晶为主;流变应力会随着变形温度的降低和变形速率的升高而升高,较低变形速率下,动态再结晶行为更充分,应力软化现象更明显。统计实验所得流变应力曲线数据,建立了热变形本构方程,确定了合金热变形激活能Q为480.243 kJ/mol 。基于加工硬化率曲线,建立了其动态再结晶临界应变模型。结果表明,Al-0.83Mg-0.59Si铝合金的流变应力随温度的升高和变形速率的降低而降低,动态再结晶是其主要的软化机制。临界应力与峰值应力存在线性关系:σc=0.85σp-5.061 58。引入Zener Hollomon参数来描述变形条件对临界条件的影响,得到临界应变与Z参数的关系为:εc=0.000 134Z0.051 64。  相似文献   

7.
使用Gleeble-3500热模拟试验机在变形温度为800~1000℃、应变速率0.001~10 s~(-1)以及真应变为1.2的条件下对TB17钛合金进行热变形行为研究。根据热压缩数据,分析真应力-真应变曲线,计算TB17钛合金变形激活能,并建立了TB17钛合金应力-应变本构模型,对金相组织进行分析,并进行了本构模型的验证。结果表明,TB17钛合金在热压缩变形过程中,出现动态回复和动态再结晶现象,在低应变速率0.001和0.01 s~(-1)下,以动态再结晶为主要软化机制,在高应变速率1和10 s~(-1)下主要以动态回复为软化机制;流变应力随应变速率的下降和变形温度的升高而降低;峰值应力计算值和实验值的平均误差为6.5%,表明该模型有很高的精确度。研究为TB17钛合金塑性加工过程的模拟和控制提供了参考。  相似文献   

8.
采用Gleeble-1500热模拟试验机对3003铝合金进行变形温度为300~500℃,应变速率为0.01~10.0 s-1高温等温压缩实验,利用Zener-Hollomon参数模型建立了合金热变形峰值流变应力本构模型。结合显微组织观察分析,3003铝合金热变形软化机制主要是动态再结晶,随着ln Z值的减小,动态再结晶进行得越充分;ln Z值较大时,3003铝合金热变形过程中的软化机制主要以动态回复为主,据此获得合金发生动态再结晶的临界条件为T≥400℃,ln Z≤31.98。由应变硬化速率计算合金发生动态再结晶的临界应变为εεc=0.00532ln Z-0.12452,其大小与Z参数成正比关系。  相似文献   

9.
AZ80合金高温变形行为及加工图   总被引:6,自引:0,他引:6  
为实现AZ80合金塑性成形的数值模拟和制定其合理的热加工工艺,利用热模拟机对AZ80合金进行不同变形温度和应变速率的高温压缩变形行为研究.结果表明:AZ80合金的高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的AZ80合金高温变形的本构模型较好地表征其高温流变特性,模型计算精度高;同时,利用建立的AZ80合金的DMM加工图分析其变形机制和失稳机制,从提高零件力学性能角度考虑,可以优先选择变形温度为300~350 ℃、应变速率为0.001~0.01 s-1的工艺参数.  相似文献   

10.
采用Gleeble-3800热模拟试验机,在温度为1173~1473 K,应变速率为0.01~10 s-1的变形条件下,对一种航空用高强度渗碳钢-9310钢进行热压缩实验,基于真应力-应变曲线,研究了两种高温变形流变应力的本构方程模型-位错模型和Sellars模型在该钢上的应用,根据动态再结晶是否发生,建立了不同热变形阶段下9310钢的流变应力本构方程。研究表明,在ε0.1条件下的动态软化和稳态流变阶段中,基于位错密度和动态软化机制的位错模型方程,精度误差在15%以下,但该方程参数多,计算量大,而基于Sellars模型的本构方程,在低温热变形(T1273 K)及大应变(ε0.5)条件下的精度误差更小,且方程相对简单,便于应用。在高强渗碳9310钢的热加工生产中,建议采用Sellars模型作为大应变条件下流变应力的预报方程,精度误差控制在10%以下;为了提高方程精度,Sellars模型下由于动态再结晶软化引起的应力降低值Δσ中,相关参数的取值还有进一步修正的可能。  相似文献   

11.
利用Gleeble-1500热模拟试验机研究了3种含铌或不含铌低碳钢在850~1150℃,应变速率分别为0.05、1、10 s-1条件下的热变形行为。采用应变硬化速率-应力(θ-σ)曲线图较精确地获得了C-Mn钢的流变应力和峰值应力;用-dθ/dσ-σ曲线获取了含Nb试验钢的应变和应力值;用回归法确定了双曲线本构方程中的变形激活能,确定了3种试验钢发生动态再结晶的激活能分别为234.867、261.276、301.751 kJ/mol。随Nb含量的增加,试验钢的再结晶激活能逐渐升高。  相似文献   

12.
Effects of microalloyed niobium (Nb) on the austenite decomposition behaviors and microstructure evolution during continuous cooling in the near eutectoid steels were investigated. Compared to the Nb free steel, the Nb microalloyed steel was refined with regard to polygonal ferrite grain, pearlite block and colony sizes. This was because its austenite grain size was smaller. The volume fraction of polygonal ferrite transformed was more in the Nb microalloyed steels, which indicated the eutectoid carbon content exceeded that of pure carbon steel. The spheroidization of pearlite during continuous cooling was enhanced by Nb microalloying, mainly due to a higher critical transformation temperature and the finer pearlite structure with smaller colony size and narrower interlamellar spacing. Hot deformation right above the equilibrium eutectoid temperature accelerated the spheroidization kinetics of pearlite, especially in the Nb microalloyed steel.  相似文献   

13.
The kinetics of dynamic precipitation in austenite of a complex Nb-Ti-V microalloyed steel during hot compression at 900 °C with a strain rate of 6.7 s?1 was quantitatively investigated through electrical resistivity measurements. The dynamic precipitation in the Nb-Ti-V microalloyed steel started at a strain of 0.15. The amount of tiny Nb-rich (Nb,Ti,V)C carbides, which were precipitated at crystal defects gradually increased up to 0.02 wt% at a maximum strain of 0.67. The electrical resistivity was successfully applied to the quantitative evaluation of dynamic precipitation kinetics in microalloyed steel by excluding the effects of crystal defects and interstitial atoms on the electrical resistivity.  相似文献   

14.
沈彬彬  郑艳 《物理测试》2019,37(4):12-13
利用 Gleeble-3800液压楔单元对加铌 HRB400进行圆柱体单向热压缩。通过试验得到应力 -应变曲线从而研究其热变形工艺参数的改变对 HRB400Nb的影响。研究不同热变形工艺参数对加铌微合金化的 HRB400的影响分析,为微合金化带肋钢筋热加工工艺的制定提供试验依据。结果表明,本研究用钢对温度和应变速率均较为敏感,在高应变速率下 HRB400Nb具有断续动态再结晶行为。  相似文献   

15.
以微合金元素的析出热力学和析出动力学为基础,针对Fe-Nb-V-Ti-Al-C-N合金系,定量计算了热连轧过程中(Nb,V,Ti)(C,N)和AlN在奥氏体中的析出行为,并进一步分析了热轧制温度对析出行为的影响。计算结果表明,对所研究的钢种成分和工艺条件,在加热过程中(Nb,V,Ti)(C,N)就已经析出,在粗轧阶段,(Nb,V,Ti)(C,N)析出粒子平均半径逐渐减小,在精轧阶段,(Nb,V,Ti)(C,N)基本达到平衡析出量,终轧后析出粒子平均半径保持在23 nm左右。轧制时的热变形增大了形核率,促进了析出,使析出粒子的平均半径减小。随加热和轧制温度的降低,(Nb,V,Ti)(C,N)的析出量有所增加,粒子平均半径减小。  相似文献   

16.
热处理工艺对含Nb焊缝金属组织与力学性能的影响   总被引:1,自引:0,他引:1  
采用含Nb及不含Nb两种焊丝对高速列车转向架用S355J2G3钢板进行焊接,分析了焊态下接头各区域的性能差别,研究了合金元素Nb和焊后热处理制度对焊缝金属组织和性能的影响.结果表明:焊缝金属的韧性是焊接接头性能的薄弱环节.焊态下Nb的加入提高了焊缝金属的强度,但对塑性和韧性无明显影响.经去应力退火后,不含Nb焊缝金属的强度降低,延伸率和冲击功升高,而含Nb焊缝金属的强度升高,延伸率和冲击功降低,退火后含Nb焊缝金属中NbC颗粒析出是影响焊缝金属组织和性能的主要因素.在焊后正火处理条件下,随着正火温度的升高,不含Nb焊缝金属的组织和性能均无明显变化,而含Nb焊缝金属的强度明显升高,延伸率和冲击功显著降低.严格控制正火温度是含Nb焊缝金属获得高强韧性的关键.含Nb焊缝中魏氏组织的含量随正火温度的升高而明显增多.电镜观察表明,经920℃正火处理后,焊缝中的NbC颗粒尺寸大于退火态焊缝金属中的NbC相,而在1200℃正火处理后NbC颗粒溶解消失.  相似文献   

17.
In this study cool deformation was incorporated in the overall thermo-mechanical processing of a Nb-microalloyed steel. Included in this was the effect of cooling rate subsequent to hot rolling on precipitate formation in the ferrite phase. The results show that increasing the cooling rate prevents precipitate formation in the ferrite phase at the cool deformation temperature. As well, the amount of retained austenite under the low cooling condition in the temperature range of cool deformation, 700-300 °C, was measured by neutron diffraction. It is then shown that strain-induced transformation of retained austenite to martensite is the main factor in increasing the strength of cool deformed Nb microalloyed steel. Combining accelerated cooling, strain-induced transformation of austenite to martensite during cool deformation and a subsequent heat treatment stage to increase precipitation maximizes the flow stress of the steel. Finally, it is shown that this process also lowers the yield strength/ultimate strength ratio.  相似文献   

18.
《Acta Materialia》2002,50(4):735-747
A model Fe–30 wt% Ni, 0.1 C, 1.61 Mn, 0.1 Nb microalloyed steel, that simulates conventional microalloyed C–Mn steels, but does not transform from the austenite phase on cooling, is reported. Plane strain compression testing was undertaken at 950°C at a constant true strain rate of 10 s−1. Samples were deformed in a two stage process. An initial true strain of 0.25–0.45 was followed by unloading, a hold of 1–1000 s and a final deformation to a total true strain of 0.5–0.9. A single deformation was undertaken under identical conditions, but to the total true strain of the double deformation tests. Electron spectroscopic imaging (ESI) in the TEM was used to determine precipitate size and distribution. A 1 s hold time between equal strains of ϵ=0.25 was sufficient for appreciable strain induced precipitation, although 40% static recrystallisation occurred during the hold time. Precipitation occurred entirely on dislocations, present principally as microband walls but also as a rudimentary cell structure within the microbands. No evidence was found for NbC precipitation in the matrix, which therefore remains supersaturated with Nb. NbC particle diameter was in the range 2.5–15 nm, with a density of 3.8×1021 particles/m3 for a 100 s delay period between two strains of ϵ=0.45 at 950°C. Both the size and number density are consistent with those observed in conventional microalloyed C–Mn steels. The behaviour of the model microalloyed Fe–30 Ni steel is discussed in relation to the data on conventional microalloyed steels.  相似文献   

19.
宫美娜  李海军  王斌  王昭东 《轧钢》2020,37(1):12-17
采用热模拟单道次压缩实验,研究了Nb-Ti连铸坯热芯大压下轧制中动态再结晶行为及奥氏体晶粒转变规律。结果表明,变形温度越高,应变速率越低,发生动态再结晶的临界应变值越小,动态再结晶越充分。在变形温度1 350 ℃,继续增加应变至0.8和增加应变速率至10 s-1,奥氏体晶粒尺寸并未得到进一步细化,反而较应变0.5和应变速率5 s-1下的奥氏体晶粒更加粗大。这是因为高温粘塑性区的金属晶间粘性流动增加,位错增殖速度增大,在动态再结晶过程中会重新形成新的无畸变再结晶晶粒,这些新的无畸变晶粒的亚动态再结晶动力学极快,在较大驱动力下使奥氏体晶界快速迁移,从而使奥氏体发生一定程度的粗化。  相似文献   

20.
宫美娜  李海军  王斌  王昭东 《轧钢》2007,37(1):12-17
采用热模拟单道次压缩实验,研究了Nb-Ti连铸坯热芯大压下轧制中动态再结晶行为及奥氏体晶粒转变规律。结果表明,变形温度越高,应变速率越低,发生动态再结晶的临界应变值越小,动态再结晶越充分。在变形温度1 350 ℃,继续增加应变至0.8和增加应变速率至10 s-1,奥氏体晶粒尺寸并未得到进一步细化,反而较应变0.5和应变速率5 s-1下的奥氏体晶粒更加粗大。这是因为高温粘塑性区的金属晶间粘性流动增加,位错增殖速度增大,在动态再结晶过程中会重新形成新的无畸变再结晶晶粒,这些新的无畸变晶粒的亚动态再结晶动力学极快,在较大驱动力下使奥氏体晶界快速迁移,从而使奥氏体发生一定程度的粗化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号