首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用磁控共溅射法制备了Co含量介于6.4at%~16.4at%的Co-C纳米复合薄膜。形貌观察表明,Co纳米颗粒均匀分散在C基体中,相邻Co颗粒被C基体较好地分离,样品呈现典型的颗粒薄膜结构。Co颗粒平均尺寸随Co含量增加而增大。薄膜在低温下磁性较强,在室温下磁性较弱;磁化强度随Co含量增加显著提高。当温度为4.2K、磁场为90×79.6kA·m-1时,在Co含量为6.4at%、8.3at%和9.6at%的Co-C薄膜中分别观察到9.1%、4.3%和1.9%的负磁电阻,为碳基磁性颗粒薄膜获得优异磁输运性能提供可能。受微结构变化影响,样品磁电阻值随Co含量的增加而下降。  相似文献   

2.
采用磁控共溅射方法在n型Si(100)基片上制备了一系列具有不同Co含量(x,at%)的Co掺杂非晶C颗粒薄膜,溅射温度为室温.研究了Co-C颗粒薄膜的微结构,磁输运特性及磁性能.通过优化Co含量,在低温下发现了较大的负磁电阻(MR).温度为2K、磁场为90×79.6 kA.ml时,Co含量为6.4 at%的Co-C薄膜的负磁电阻值最大,达到27.6%.随着Co含量从6.4 at%增加至16.4 at%,MR 值从27.6%逐渐减小至2.2%.电阻率ρ随温度T的变化曲线显示了线性的lnρ-T1/2关系,说明样品中电子传导遵循隧穿输运机制.  相似文献   

3.
采用磁控共溅射方法在n型Si(100)基片上制备了一系列具有不同Co含量(x,at%)的Co掺杂非晶C颗粒薄膜,溅射温度为室温。研究了Co-C颗粒薄膜的微结构,磁输运特性及磁性能。通过优化Co含量,在低温下发现了较大的负磁电阻(MR)。温度为2K、磁场为90×79.6kA.m-1时,Co含量为6.4at%的Co-C薄膜的负磁电阻值最大,达到27.6%。随着Co含量从6.4at%增加至16.4at%,MR值从27.6%逐渐减小至2.2%。电阻率??随温度T的变化曲线显示了线性的ln?-T-1/2关系,说明样品中电子传导遵循隧穿输运机制。  相似文献   

4.
采用磁控溅射法制备Dyx(Co21Cu79)100-x(x=0,4,8,9,12,14)颗粒膜.XRD结果表明:添加稀土元素Dy将促进CoCu过饱和固溶体分解,此外Dy元素还具有细化晶粒的作用.磁电阻测试发现:随着Dy含量的增加,Dyx(Co21Cu79)100-x薄膜的电阻逐渐增大,而薄膜的巨磁电阻(GMR)值先升后降,当退火温度Ta=425℃时,Dy4(Co21Cu79)96薄膜的GMR值达到最大,为-4.68%.薄膜的磁滞回线表明:矫顽力Hc随退火温度的升高逐渐增大,随Dy含量的增加,却单调减小.  相似文献   

5.
采用磁控溅射法在不同基底温度下制备Co-TiO_2纳米复合薄膜。所合成的纳米复合薄膜由TiO_2非晶基体和分散其中的Co颗粒组成,呈铁磁和超顺磁共存的特性。随着基底温度从室温升高到400°C,Co颗粒尺寸逐渐增大,氧化程度明显降低。因此,在Co含量相同的情况下,随着基底温度的升高(从室温升高至400°C),饱和磁化强度从0.13增加到0.43 T。在高基底温度下,一部分Co颗粒聚集形成导电路径,导致电阻率从1600快速下降至76μΩ·m。即使在电阻率低至76μΩ·m的情况下,依然能获得Co-TiO_2的磁电阻性能。结果表明,纳米复合薄膜在室温下具有低Co氧化、高磁化强度和磁阻特性。  相似文献   

6.
采用磁控溅射法制备Dyx(Co21Cu79)100-x(x=0,4,8,9,12,14)颗粒膜。XRD结果表明:添加稀土元素Dy将促进CoCu过饱和固溶体分解,此外Dy元素还具有细化晶粒的作用。磁电阻测试发现:随着Dy含量的增加,Dyx(Co21Cu79)100-x薄膜的电阻逐渐增大,而薄膜的巨磁电阻(GMR)值先升后降,当退火温度Ta=425℃时,Dy4(Co21Cu79)96薄膜的GMR值达到最大,为-4.68%。薄膜的磁滞回线表明:矫顽力Hc随退火温度的升高逐渐增大,随Dy含量的增加,却单调减小。  相似文献   

7.
采用直流磁控溅射技术,在n-Si (100)衬底上制备了CoxC100-x(x=2.5~50,at%)颗粒膜,并对薄膜的结构、形貌、磁性能和巨磁电阻(GMR)效应做了系统的研究.结果表明:制备态的Co-C薄膜为非晶结构,且表面光滑、颗粒尺寸及膜厚度均匀;随热处理温度的增加,Co成分在300℃逐渐开始晶化,400℃基本晶化完全,500℃度的时候膜层开始出现裂纹;拉曼光谱显示制备态薄膜为类金刚石(DLC)薄膜;X射线光电子能谱(XPS)分析表明,包埋在碳基薄膜中的Co掺杂纳米颗粒以单质形态存在,没有Co的碳化物出现,且Co掺杂没有促进碳膜的石墨化,Co-C纳米复合薄膜组成了一个互不相溶的金属/绝缘体体系;磁性能测试显示薄膜的饱和磁化强度(Ms)和矫顽力(Hc)与Co的含量和颗粒的晶化程度有密切关系;磁电阻测量结果表明Co2.5C97.5薄膜具有高达36%的正GMR效应,GMR效应遵循输运通道的转变机制.  相似文献   

8.
用电子束蒸发方法制备了多晶NiMnGa薄膜.用Ni52Mn26Ga22合金作靶材,衬底为<111>取向的单晶硅抛光面.沉积时衬底温度为773K.电子束蒸发在本底真空3×10-3Pa中进行.X射线衍射图谱表明薄膜在室温下为奥氏体相.电阻随温度的变化关系表明薄膜的马氏体相变开始温度约在256K,且相变滞后较小.在室温下的奥氏体具有正的磁电阻效应,在1T磁场下磁电阻为0.06%.马氏体的磁电阻很小,这种差异来源于电子结构的不同.  相似文献   

9.
采用直流磁控溅射技术,在n-Si(100)衬底上制备了Cox C100-x(x=2.5~50,at%)颗粒膜,并对薄膜的结构、形貌、磁性能和巨磁电阻(GMR)效应做了系统的研究。结果表明:制备态的Co-C薄膜为非晶结构,且表面光滑、颗粒尺寸及膜厚度均匀;随热处理温度的增加,Co成分在300℃逐渐开始晶化,400℃基本晶化完全,500℃度的时候膜层开始出现裂纹;拉曼光谱显示制备态薄膜为类金刚石(DLC)薄膜;X射线光电子能谱(XPS)分析表明,包埋在碳基薄膜中的Co掺杂纳米颗粒以单质形态存在,没有Co的碳化物出现,且Co掺杂没有促进碳膜的石墨化,Co-C纳米复合薄膜组成了一个互不相溶的金属/绝缘体体系;磁性能测试显示薄膜的饱和磁化强度(Ms)和矫顽力(Hc)与Co的含量和颗粒的晶化程度有密切关系;磁电阻测量结果表明Co2.5C97.5薄膜具有高达36%的正GMR效应,GMR效应遵循输运通道的转变机制。  相似文献   

10.
采用磁控溅射方法,以Si(1OO)为衬底在40~80 W功率下制备了Fe_(83)Ga_(17)薄膜,通过XRD、SEM、室温磁滞回线以及MFM的测量研究了不同溅射功率制备的Fe-Ga薄膜的结构、形貌、磁性能和磁畴。XRD结果表明室温下薄膜样品是bcc(11O)晶体结构。SEM观察结果表明薄膜颗粒尺寸在40~70 nm且随着功率增大,薄膜颗粒的尺寸变大,薄膜厚度增加。室温磁滞回线的测量结果表明一定范围内随着功率增大,样品的矫顽力H_c总体呈上升趋势,饱和磁化强度M_s的变化规律并不明显,剩余磁化强度M和矩形比Mr/Ms呈缓慢下降的趋势。磁畴的观察结果表明样品的磁畴为迷宫畴结构,且随着功率增大,磁畴的尺寸增大。  相似文献   

11.
稀土锆酸盐是高温热障涂层与高温固体电解质的候选材料之一,通式为Ln2Zr2O7(Ln为稀土元素),具有烧绿石结构或缺陷型萤石结构;具有高熔点、低热导率、高热膨胀系数、高化学稳定性、相对低的传导温度、优良的离子导电性能和高辐射稳定性等特点,在诸多领域得到广泛应用。综述了目前国内外稀土锆酸盐材料的热物理性能、电学性能和力学性能方面的最新研究进展,展望了未来稀土锆酸盐材料在热障氧化物材料和固体氧化物燃料电池电解质方面的应用前景。  相似文献   

12.
生命科学技术以人为认识和操纵对象,而人是世界上最复杂的自然存在物,由此带来一些社会问题,这些问题所代表的冲突只是表面现象,冲突的实质是人性原则的冲突。  相似文献   

13.
完卫国 《物理测试》2005,23(4):6-10
测试、研究了460MPa级热轧带肋钢筋的热膨胀系数、高温强度、弹性模量、应变时效性能、机械连接性能和焊接性能,为更好地使用这种钢筋提供参考。  相似文献   

14.
高熵合金是21世纪初才问世的新型金属材料。尽管其诞生至今时间较短,但高熵合金因具有多种优异性能、特别是具有优异的力学性能、优异的催化和抗辐照等性能而受到广泛关注。近年来,相关研究已取得了显著进展,很有必要对其研究进展进行梳理。为此,本文简要综述了相关研究成果,并从高熵合金的基本概念、力学性能和功能性能3方面进行概括介绍,以期为高熵合金研究人员提供参考。  相似文献   

15.
通过对水热合成刚玉微粉和电熔刚玉微粉粉体性能和烧结性能的实验研究,表明水热合成刚玉微粉在化学成分、晶体形态、粒度分布、磨削性能和烧结性能等指标上优于电熔刚玉。  相似文献   

16.
综述了近年来高熵合金(涂层)表面改性技术的研究进展,从原理角度将表面改性技术分为高能量束表面重熔处理和表面冷变形处理2类。这2类表面改性技术都可以改善高熵合金(涂层)的微观组织并减少缺陷,从而达到调控性能的目的。不同之处在于,高能量束表面重熔处理是通过快速熔化及凝固实现的,而表面冷变形处理则是通过使表面发生严重的塑性变形来达成的。高能量束表面重熔处理包括激光重熔和强流脉冲电子束重熔,而表面冷变形处理包括表面机械研磨处理、超声表面滚压处理、超声冲击处理和激光冲击强化。简述了以上几种技术的原理,总结了不同技术之间的优缺点,并对不同改性技术与工艺参数对高熵合金相结构、微观组织的影响进行了概述。基于微观结构的变化,重点探讨和总结了不同改性技术对高熵合金(涂层)力学性能、磨损性能、腐蚀性能的强化机理。最后提出了高熵合金表面改性技术所面临的困难和挑战,并对未来发展方向进行了展望。  相似文献   

17.
酶法脱墨作用下纤维的物理化学特性研究   总被引:1,自引:1,他引:0  
魏婷  易红玲  林珩  公维光  郑柏存 《表面技术》2012,41(2):64-66,73
对不同酶促条件下纤维的滤水性、聚合度、表面积、饱和吸附量、表面电荷进行测定,利用SEM和FITR对纤维表征。结果表明:生物酶法脱墨对纤维有一定的降解作用,当酶用量为3.5IU/g时,首先水解纸浆中的细小纤维,而对长纤维水解作用不大。  相似文献   

18.
基于准同型相界(morphotropic phase boundary, MPB) 线性组合规律,研究Pb(Mg_(1/3)Nb_(2/3))O_3 -Pb(Zn_(1/3)Nb_(2/3))O_3-PbTiO_3 (PMN-PZN-PT)三元系的MPB区域,并探求电学性能优越的组分.实验选取(1-x) (0.67 PMN- 0.33 PT)-x(0.91 PZN-0.09 PT) 系列中x=0~0.85的8个实验点;为减少焦绿石相的生成,陶瓷试样用铌铁矿预产物法合成,最终在1120~1160 ℃烧成.X射线衍射分析表明该系列试样均为钙钛矿结构,且处于四方与菱方两相共存态,验证了两个子二元系MPB组分的连线均为该三元系的MPB区域.少量的PZN-PT取代PMN-PT可以提高该三元系的电学性能;在x=0.1的组分获得该系列的最优性能:极值介电常数ε_(m,1 kHz)=28 030,剩余极化强度Pr=32.5 μC/cm~2,压电系数d_(33)=545 pC/N.  相似文献   

19.
有限元法是工程领域中应用最广泛的一种数值计算方法,从力学分析问题的角度来看,已在弹性静力学问题、动力学问题、弹塑性与接触力学、蠕变、疲劳与断裂力学、流体力学和热力学等领域得到广泛的应用。泡沫铝材料的力学性能主要包括压缩性能、拉伸性能、弯曲性能、冲击性能、吸能性等。本文详细叙述了有限元模拟泡沫铝压缩性能的现状及成果,简单介绍了模拟泡沫铝弯曲性能和吸能性的现状和成果,最后针对现状提出了自己的观点和看法。  相似文献   

20.
Ni/Al2O3 composites were prepared by hot pressing approach. The relationship between their microstructure, mechanical, dielectric and magnetic properties with Ni particle content was studied. By increasing the amount of metal in the composite, the relative density and the bending strength decrease gradually. The possible reason is that non-wetting between Ni and alumina in the preparation results in weak adhesion of the Ni/A; interface. For the composites, the maximum fracture toughness is 6.4 MPa. m^1/2, which is about 25% higher than that of pure alumina ceramic. The increase in toughness of the Ni/Al2O3 composites is due to the deformation of nickel particles. The complex dielectric constant measurements indicate that the real part and the imaginary part increase greatly with the Ni content in the frequency range of 8.2-12.4 GHz. The real part and the imaginary part of complex permeability of the composites also increase with increasing Ni content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号