首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compared with those of BP/7A04 Al matrix composites. The results show that the basalt particles are dispersed in the Al matrix and form a strong bonding interface with the Al matrix. SiO2 at the edge of the basalt particles is continuously replaced by Al2O3 formed in the reaction, forming a high-temperature reaction layer with a thickness of several tens of nanometers, and Al2O3 strengthens the bonding interface between basalt particles and Al matrix. The dispersed basalt particles promote the dislocation multiplication, vacancy formation and precipitation of the matrix, and the precipitated phases mainly consist of plate-like η (MgZn2) phase and bright white band-shaped or ellipsoidal T (Al2Mg3Zn3) phase. The bonding interface, high dislocation density and dispersion strengthening phase significantly improve the mechanical properties of the composites. The yield strength and ultimate tensile strength of BP/7A04 Al matrix composites are up to 665 and 699 MPa, which increase by 11.4% and 10.9% respectively compared with 7A04 Al alloy without basalt particles.  相似文献   

2.
Alumina particle reinforced 6061 aluminum matrix composites (Al2O3p/6061Al) have excellent physical and chemical properties than those of a traditional metal; however, their poor machinability lead to worse surface quality and serious cutting tool wear. In this study, wire electrical discharge machining (WEDM) is adopted in machining Al2O3p/6061Al composite. In the experiments, machining parameters of pulse-on time were changed to explore their effects on machining performance, including the cutting speed, the width of slit and surface roughness. Moreover, the wire electrode is easily broken during the machining Al2O3p/6061Al composite, so this work comprehensively investigates into the locations of the broken wire and the reason of wire breaking.The experimental results indicate that the cutting speed (material removal rate), the surface roughness and the width of the slit of cutting test material significantly depend on volume fraction of reinforcement (Al2O3 particles). Furthermore, bands on the machined surface for cutting 20 vol.% Al2O3p/6061Al composite are easily formed, basically due to some embedded reinforcing Al2O3 particles on the surface of 6061 aluminum matrix, interrupt the machining process. Test results reveal that in machining Al2O3p/6061Al composites a very low wire tension, a high flushing rate and a high wire speed are required to prevent wire breakage; an appropriate servo voltage, a short pulse-on time, and a short pulse-off time, which are normally associated with a high cutting speed, have little effect on the surface roughness.  相似文献   

3.
Two micron SiC particles with angular and spherical shape and the sub-micron Al2O3 particles with spherical shape were introduced to reinforce 6061 aluminium by squeeze casting technology.Microstructures and effect of thermal-cooling cycle treatment(TCCT) on the thermal expansion behaviors of three composites were investigated.The results show that the composites are free of porosity and SiC/Al2O3 particles are distributed uniformly.Inflections at about 300 °C are observed in coefficient of thermal expansion(CTE) versus temperature curves of two SiCp/Al composites,and this characteristic is not affected by TCCT.The TCCT has significant effect on thermal expansion behavior of SiCp/Al composites and CTE of them after 3 cycles is lower than that of 1 or 5 cycles.However,no inflection is observed in Al2O3p/Al composite,while TCCT has effect on CTE of Al2O3p/Al composite.These results should be due to different relaxation behavior of internal stress in three composites.  相似文献   

4.
In this study, Al/Al2O3/WC composites were fabricated via the accumulative roll bonding (ARB) process. Furthermore, the microstructure evolution, mechanical properties, and deformation texture of the composite samples were reported. The results illustrated that when the number of cycles was increased, the distribution of particles in the aluminum matrix improved, and the particles became finer. The microstructure of the fabricated composites after eight cycles of the ARB process showed an excellent distribution of reinforcement particles in the aluminum matrix. Elongated ultrafine grains were formed in the ARB-processed specimens of the Al/Al2O3/WC composite. It was observed that as the strain increased with the number of cycles, the tensile strength, microhardness, and elongation of produced composites increased as well. The results indicated that after ARB process, the overall texture intensity increases and a different-strong texture develops. The main textural component is the Rotated Cube component.  相似文献   

5.
Aluminum is the best metal for producing metal matrix composites which are known as one of the most useful and high-tech composites in our world. Combining aluminum and nano Al2O3 particles will yield a material with high mechanical properties. Characterization of tribological properties revealed that the presence of nano particles significantly increased wear resistance of the composite. In case of unreinforced Al alloy, the depth of penetration is governed by the hardness of the specimen surface and applied load. But, in case of Al matrix composite, the depth of penetration of the harder asperities of hardened steel disk is primarily governed by the protruded hard ceramic reinforcement. The hard Al2O3 particles act as a protrusion over the matrix, carries a major portion of the applied load and protect the abrasives from penetration into the specimen surface.  相似文献   

6.
Nano-AlN and submicron-Al2O3 particles were simultaneously utilized in a 6061 Al matrix composite to improve the high-temperature strength. According to the SEM and TEM characterization, nano-AlN and submicron- Al2O3 particles are uniformly distributed in the Al matrix. Brinell hardness results indicate that different from the traditional 6061 Al matrix alloy, the aging kinetics of the composite is obviously accelerated by the reinforcement particles. The T6-treated composite exhibits excellent tensile properties at both room temperature and elevated temperature. Especially at 350 °C, the T6-treated composite not only has a high yield strength of 121 MPa and ultimate tensile strength of 128 MPa, but also exhibits a large elongation of 11.6%. Different strengthening mechanisms of nano-AlN and submicron-Al2O3 particles were also discussed in detail.  相似文献   

7.
A novel two step mixing method including injection of particles into the melt by inert gas and stirring was used to prepare aluminum matrix composites (AMCs) reinforced with Al2O3 particles. Different mass fractions of micro alumina particles were injected into the melt under stirring speed of 300 r/min. Then the samples were extruded with ratios of 1.77 or 1.56. The microstructure observation showed that application of the injection and extrusion processes led to a uniform distribution of particles in the matrix. The density measurements showed that the porosity in the composites increased with increasing the mass fraction of Al2O3 and stirring speed and decreased by extrusion process. Hardness, yield and ultimate tensile strengths of the extruded composites increased with increasing the particle mass fraction to 7%, while for the composites without extrusion they increased with particle mass fraction to 5%.  相似文献   

8.
Al5Mg alloy matrix composites reinforced with different percentages of Al2O3 (60 μm) or C (90 μm) particulates were prepared by the vortex method. The composites were then subjected to hot or cold rolling with different reduction ratios. The microstructures of the rolled composites revealed that the matrix grains moved around the particulate causing deformation. By continuing deformation, the particulates rearranged themselves in the matrix, leading to lensoid distortion. It was found that the addition of Al2O3 or C particulates increased the 0.2% proof stress and reduced both the tensile strength and ductility, compared with the monolithic alloy. Scanning electron microscopy (SEM) fractographic examinations showed that the composites reinforced with Al2O3 particulates failed through particulate fracture and matrix ligament rupture. However, the failure of the composites reinforced with C particulates was through particulate decohesion, followed by ductile failure of the matrix. Abrasive wear results showed that the wear rate of the Al5Mg alloy decreased with the addition of C particulates. However, increasing the volume fraction of C particulates did not have a prominent effect on the wear rate. The composites reinforced with Al2O3 particulates exhibited a higher wear rate than that of the unreinforced alloy. Furthermore, addition of both C and Al2O3 particulates into the Al5Mg matrix alloy did not significantly improve the wear resistance. For all composites studied in this work, hot or cold rolling had a marginal effect on the wear results.  相似文献   

9.
Aluminum (Al) alloy 7075 reinforced with Al2O3 particles was prepared using the stir casting method. The microstructure of the cast composites showed some degree of porosity and sites of Al2O3 particle clustering, especially at high-volume fractions of Al2O3 particles. Different squeeze pressures (25 and 50 MPa) were applied to the cast composite during solidification to reduce porosity and particle clusters. Microstructure examinations of the squeeze cast composites showed remarkable grain refining compared with that of the matrix alloy. As the volume fraction of particles and applied squeeze pressure increased, the hardness linearly increased. This increase was related to the modified structure and the decrease in the porosity. The effect of particle volume fraction and squeeze pressure on the dry-sliding wear of the composites was studied. Experiments were performed at 10, 30, and 50 N with a sliding speed of 1 m/s using a pin-on-ring apparatus. Increasing the particle volume fraction and squeeze pressure improved the wear resistance of the composite compared with that of the monolithic alloy, because the Al2O3 particles acted as load-bearing constituents. Also, these results can be attributed to the fact that the application of squeeze pressure during solidification led to a reduction in the porosity, and an increase in the solidification rate, leading to a finer structure. Moreover, the application of squeeze pressure improved the interface strength between the matrix and Al2O3 particles by elimination of the porosity at the interface, thereby providing better mechanical locking.  相似文献   

10.
A new method was used to fabricate 7075 Al alloy based composites with Al2O3 nanoparticles to improve the distribution of particles. In this study, nano-sized particles were fed into the molten alloy through the flow of argon gas, then the Al2O3/7075 composites were prepared by solid-liquid mixed casting. The results indicated that the composite samples showed fine microstructure and achieved a homogeneous distribution of particles. Also, it was found that relative to the as-cast 7075 alloy, the Al2O3/7075 composites exhibited higher mechanical properties, which is due to the effect of uniform distributed Al2O3 nanoparticles reinforcement.  相似文献   

11.
搅拌摩擦加工原位反应制备Al_3Ti-Al表面复合层   总被引:1,自引:1,他引:0       下载免费PDF全文
通过在铝合金1100-H14表面加工矩形凹槽并添加微米级钛粉再进行搅拌摩擦加工(friction stir processing,FSP)的方法,在铝合金表面获得Al3Ti-Al复合层.采用扫描电镜(SEM),能谱分析(EDS)以及X射线衍射(XRD)对表面复合层微观结构及相组成进行了分析,并对复合层的显微硬度进行了检测.结果表明,在FSP强烈的热、力耦合作用下,钛粉产生了碎化,破碎后的钛颗粒与铝产生快速原位反应,生成微米和亚微米级Al3Ti颗粒,残留的钛颗粒和细小的Al3Ti颗粒一同均匀地分布于铝合金基体中,从而使得铝合金表面的硬度得到提高,其平均值达到了71.39HV,为基体硬度的2.1倍.  相似文献   

12.
Aluminum/alumina composites are used in automotive and aerospace industries due to their low density and good mechanical strength. In this study, compocasting was used to fabricate aluminum-matrix composite reinforced with micro and nano-alumina particles. Different weight fractions of micro (3, 5 and 7.5 wt.%) and nano (1, 2, 3 and 4 wt.%) alumina particles were injected by argon gas into the semi-solid state A356 aluminum alloy and stirred by a mechanical stirrer with different speeds of 200, 300 and 450 rpm. The microstructure of the composite samples was investigated by Optical and Scanning Electron Microscopy. Also, density and hardness variation of micro and nano composites were measured. The microstructure study results revealed that application of compocasting process led to a transformation of a dendritic to a nondendritic structure of the matrix alloy. The SEM micrographs revealed that Al2O3 nano particles were surrounded by silicon eutectic and inclined to move toward inter-dendritic regions. They were dispersed uniformly in the matrix when 1, 2 and 3 wt.% nano Al2O3 or 3 and 5 wt.% micro Al2O3 was added, while, further increase in Al2O3 (4 wt.% nano Al2O3 and 7.5 wt.% micro Al2O3) led to agglomeration. The density measurements showed that the amount of porosity in the composites increased with increasing weight fraction and speed of stirring and decreasing particle size. The hardness results indicated that the hardness of the composites increased with decreasing size and increasing weight fraction of particles.  相似文献   

13.
In the present study, the reciprocating wear behavior of 7075Al/SiC composites and 6061Al/Al2O3 composites that are prepared through liquid metallurgy route is analyzed to find out the effects of weight percentage of reinforcement and load at the fixed number of strokes on a reciprocating wear testing machine. The Metal Matrix Composite (MMC) pins are prepared with different weight percentages (10, 15 and 20%) of SiC and Al2O3 particles with size of 36 μm. Hardness of these composites increases with increase in wt.% of reinforcement. However, the impact strength decreases with increase in reinforcement content. The experimental result shows that the volume loss of MMC specimens is less than that of the matrix alloy. However, the volume loss is greater in 6061Al/Al2O3 composites when compared to 7075Al/SiC composites. The temperature rise near the contact surface of the MMC specimens increases with increase in wt.% of reinforcement and applied load. The coefficient of friction decreases with increase in load in both cases.  相似文献   

14.
Al2O3/TiAl composites are successfully fabricated by the in-situ hot pressing method from the elemental powders of Ti, Al, TiO2, and V2O5. The effect of V2O5 addition on the microstructure and mechanical properties of the Al2O3/TiAl in-situ composites is investigated in detail. It is found that the as-synthesized composites mainly consist of V-dissolved γ-TiAl, α2-Ti3Al, and Al2O3 particles along with a small amount of V3Al phase, and the in-situ-formed fine Al2O3 particles tend to disperse on the grain boundaries of TiAl matrix. With increasing V2O5 content, the density and Vickers hardness of the resulting composites gradually increase, whereas the fracture toughness and flexural strength first increase and then decrease with the increase of V2O5 content. The composite with 3.5 wt.% V2O5 has the maximum value of 9.35 MPa m1/2 and 713.36 MPa for the fracture toughness and flexural strength, respectively. The toughening mechanism is also discussed in detail.  相似文献   

15.
Taguchi technique was used to predict the influence of processing parameters on the erosive wear behavior Al7034-T6 composite reinforced with SiC and Al2O3 particles in different mass fractions. These hybrid metal matrix composites (HMMCs) were fabricated by using a simple technique called stir casting technique. Scanning electron microscope (SEM) was used to study the surface morphology of the composite and its evolution according to processing time. The design of experiment (DOE) based on Taguchi's L16 orthogonal array was used to identify various erosion trials. The most influencing parameter affecting the wear rate was identified. The results indicate that erosion wear rate of this hybrid composite is greatly influenced more by filler content and impact velocity respectively compared to other factors. This also shows the significant wear resistance with the increase in the filler contents of SiC and Al2O3 particles, respectively.  相似文献   

16.
The toughness of ceramic materials can be improved through the inclusion of metallic particles in the ceramic matrix. The plastic deformation of the particles limits the rupture of the ceramic matrix. Al2O3‐Nb composites show the ability of niobium to form a strong bond with Al2O3, but the poor resistance to oxidation of niobium hinders the use of niobium for high temperature applications. The study of the oxidation mechanism was done using thermogravimetric analysis under an oxygen atmosphere in order to obtain the oxidation reaction rate constants of the Al2O3‐Nb composite. At the beginning the oxidation kinetics are linear, probably due to a great availability of oxygen. Later on, the oxidation mechanism showed to be parabolic, indicating that the process depends on the oxygen diffusion through the ceramic matrix.  相似文献   

17.
The formation of aluminum matrix composites fabricated by exothermic dispersion reaction in A1-TiO2-B2O3 system was investigated. The thermal analysis results show that the reactions are spontaneous and exothermic. The Gibbs free energy of α-Al2O3 is the lowest among all the combustion products, followed by TiB2 and Al3Ti. It is noted that when the B2O3/TiO2 mole ratio is below 1, the reaction products are composed of particle-like α-Al2O3, TiB2 and rod-like Al3Ti. The α-Al2O3 crystallites, resulting from the reaction between A1 and TiO2 or B2O3, are segregated at the grain boundaries due to a lower wettability with the matrix. SEM micrographs show that rod-like Al3Ti phase distributes uniformly in the matrix. When the BEO3/TiO2 mole ratio is around 1, the Al3Ti phase almost disappears in the composites, and the distribution of α-Al2O3 particulates is improved evidently.  相似文献   

18.
High-energy ball milling and low temperature sintering were successfully employed to fabricate a metal matrix composite of Al reinforced with Al2O3 particulate. Nano- and/or submicro-sized SiO2 particles embedded in an Al−Mg matrix particle can be obtained by high-energy ball milling. No new phases were found in the high-energy ball milled Al-0.4 wt.% Mg-14 wt.%SiO2 powder. Milling of the Al−Mg−SiO2 powder increased the sintering rate and decreased the sintering temperature. The hardness ofthe sintered Al−Mg−SiO2 composite using the ball-milled powder was about twice that of a sintered composite using a mixed powder due to the fine and homogeneous distribution of Al2O3 particles formed by the displacement reaction between Al and SiO2 during sintering.  相似文献   

19.
In situ Al composites reinforced by various intermetallic particles were fabricated from Al–Ti–X(Cu, Mg) systems by hot pressing, forging and subsequent 4-pass friction stir processing (FSP). The formation of various intermetallic particles during FSP and the tensile properties of in situ composites were investigated. For Al–Ti–Cu system, Cu enhanced the Al–Ti reaction and resulted in the formation of more Al3Ti particles due to the presence of a small amount of liquid phase during FSP. After FSP, part of Cu was kept in the Al matrix as solute, whereas the other formed Al2Cu particles. For Al–Ti–Mg system, except for Al3Ti, some Ti2Mg3Al18 particles with fine twin lamellas were formed during FSP, resulting in an increase in the total volume fraction of reinforcing particles. Cu and Mg addition increased the strength of the in situ composites substantially due to introduction of more strengthening modes and more reinforcing particles, however the elongation decreased dramatically.  相似文献   

20.
The cenosphere dispersed Ti matrix composite was fabricated by powder metallurgy route, and its wear and corrosion behaviors were investigated. The results show that the microstructure of the fabricated composite consists of dispersion of hollow cenosphere particles in α-Ti matrix. The average pore diameter varies from 50 to 150 μm. The presence of porosities is attributed to the damage of cenosphere particles due to the application of load during compaction as well as to the hollow nature of cenospheres. A detailed X-ray diffraction profile of the composites shows the presence of Al2O3, SiO2, TiO2 and α-Ti. The average microhardness of the composite (matrix) varies from HV 1100 to HV 1800 as compared with HV 240 of the as-received substrate. Wear studies show a significant enhancement in wear resistance against hardened steel ball and WC ball compared with that of commercially available Ti–6Al–4V alloy. The wear mechanism was established and presented in detail. The corrosion behavior of the composites in 3.56% NaCl (mass fraction) solution shows that corrosion potential (φcorr) shifts towards nobler direction with improvement in pitting corrosion resistance. However, corrosion rate of the cenosphere dispersed Ti matrix composite increases compared with that of the commercially available Ti–6Al–4V alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号