首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
膜电极催化层的组成和电催化剂的活性对质子交换膜燃料电池的性能有很大影响.采用浸渍还原法制备出了Pt平均粒径为3.1nm的Pt/C催化剂.催化剂中Pt的粒径和在碳黑载体(VulcanXC-72)表面的分散程度采用透射电镜(TEM)进行测试.用Pt/C催化剂、适量的Nation溶液和PrFE乳液制备出质子交换膜燃料电池(PEMFc)膜电极的催化剂层,并研究了该催化剂层中PTFE含量对其性能的影响.实验表明,PTFE强烈的疏水性可以迫使部分水分向阳极反扩散,催化层中加入适量的PTFE可以使膜电极具有一定的水管理能力,在去掉辅助增湿系统的条件下具有良好的极化性能.  相似文献   

2.
Pt3Ni nanoparticles have been obtained by shape-controlled synthesis and employed as oxygen reduction electrocatalysts for proton exchange membrane fuel cells (PEMFC). The effects of varying the synthesis parameters such as the types of the capping agent and the reducing agent, and the reaction time have been systematically studied. The as-prepared Pt3Ni nanoparticles were subjected to a butylamine-based surface treatment in order to prepare carbon-supported electrocatalysts. The Pt3Ni electrocatalysts show an areaspecific activity of 0.76 mA/cm2(Pt) at 0.9 V in an alkaline electrolyte, which is 4.5 times that of a commercial Pt/C catalyst (0.17 mA/cm2 (Pt)). The mass activity reached 0.30 A/mg(Pt) at 0.9 V, which is about twice that of the commercial Pt/C catalyst. Our results also show that the area-specific activities of these carbon-supported Pt3Ni electrocatalysts depend strongly on the (111) surface fraction, which is consistent with the results of a study based on Pt3Ni extended single-crystal surfaces.  相似文献   

3.
本文介绍了碳纳米管(CNTs)在质子交换膜燃料电池催化剂中的应用,对Pt/CNTs及Pt/C催化剂的比表面积、孔径、孔分布及金属表面分散情况进行了比较.实验发现,具备典型中孔结构的CNTs使得铂金属在其表面分散更加均匀.在催化剂制备工艺的研究中发现,合适的硝酸(40%)处理会使催化剂载体具备更加适宜的孔结构.通过本文的讨论,可以认为Pt/CNTs是一种可以应用在质子交换膜燃料电池上很有前景的电催化剂.  相似文献   

4.
The commercialization of fuel cells, such as proton exchange membrane fuel cells and direct methanol/formic acid fuel cells, is hampered by their poor stability, high cost, fuel crossover, and the sluggish kinetics of platinum (Pt) and Pt-based electrocatalysts for both the cathodic oxygen reduction reaction (ORR) and the anodic hydrogen oxidation reaction (HOR) or small molecule oxidation reaction (SMOR). Thus far, the exploitation of active and stable electrocatalysts has been the most promising strategy to improve the performance of fuel cells. Accordingly, increasing attention is being devoted to modulating the surface/interface electronic structure of electrocatalysts and optimizing the adsorption energy of intermediate species by defect engineering to enhance their catalytic performance. Defect engineering is introduced in terms of defect definition, classification, characterization, construction, and understanding. Subsequently, the latest advances in defective electrocatalysts for ORR and HOR/SMOR in fuel cells are scientifically and systematically summarized. Furthermore, the structure–activity relationships between defect engineering and electrocatalytic ability are further illustrated by coupling experimental results and theoretical calculations. With a deeper understanding of these complex relationships, the integration of defective electrocatalysts into single fuel-cell systems is also discussed. Finally, the potential challenges and prospects of defective electrocatalysts are further proposed, covering controllable preparation, in situ characterization, and commercial applications.  相似文献   

5.
Designing high‐performance, precious‐metal‐based, and economic electrocatalysts remains an important challenge in proton exchange membrane (PEM) electrolyzers. Here, a highly active and durable bifunctional electrocatalyst for PEM electrolyzers based on a rattle‐like catalyst comprising a Ni/Ru‐doped Pt core and a Pt/Ni‐doped RuO2 frame shell, which is topotactically transformed from an icosahedral Pt/Ni/Ru nanocrystal, is reported. The RuO2‐based frame shell with its highly reactive surfaces leads to a very high activity for the oxygen evolution reaction (OER) in acidic media, reaching a current density of 10 mA cm?2 at an overpotential of 239 mV, which surpasses those of previously reported catalysts. The Pt dopant in the RuO2 shell enables a sustained OER activity even after a 2000 cycles of an accelerated durability test. The Pt‐based core catalyzes the hydrogen evolution reaction with an excellent mass activity. A two‐electrode cell employing Pt/RuO2 as the electrode catalyst demonstrates very high activity and durability, outperforming the previously reported cell performances.  相似文献   

6.
7.
A new direction for developing electrocatalysts for hydrogen fuel cell systems has emerged, based on the fabrication of 3D architectures. These new architectures include extended Pt surface building blocks, the strategic use of void spaces, and deliberate network connectivity along with tortuosity, as design components. Various strategies for synthesis now enable the functional and structural engineering of these electrocatalysts with appropriate electronic, ionic, and electrochemical features. The new architectures provide efficient mass transport and large electrochemically active areas. To date, although there are few examples of fully functioning hydrogen fuel cell devices, these 3D electrocatalysts have the potential to achieve optimal cell performance and durability, exceeding conventional Pt powder (i.e., Pt/C) electrocatalysts. This progress report highlights the various 3D architectures proposed for Pt electrocatalysts, advances made in the fabrication of these structures, and the remaining technical challenges. Attempts to develop design rules for 3D architectures and modeling, provide insights into their achievable and potential performance. Perspectives on future developments of new multiscale designs are also discussed along with future study directions.  相似文献   

8.
燃料电池是一种非常有前景的新能源体系。燃料电池不使用热力发动机,利用电极和电解质界面发生的化学反应直接将燃料的化学能转换成电能,反应不受卡诺循环限制,因此,具有高的能量转换效率。在燃料电池中,质子交换膜燃料电池(PEMFC)在便携式设备、交通运输以及固定装置领域具有重要的应用前景。然而,目前的PEMFC还存在一些问题,主要包括高成本、功率不足、稳定性差等问题,限制了其大规模商业化应用。这些问题的根本原因在于PEMFC中阴极催化剂、气体扩散层、质子交换膜和双极板等关键材料的成本和性能还不能满足PEMFC商业化的要求。要实现PEMFC的大规模应用,需要开发先进的阴极催化剂、气体扩散层、质子交换膜和双极板等关键材料。针对PEMFC对低成本、高性能先进材料的需求,本文综述了阴极催化剂、气体扩散层、质子交换膜和双极板等关键材料的研究进展以及应用面临的问题,并指出了未来的发展方向:加强铂合金催化剂以及金属-氮-碳(M-N-C)化合物催化剂的规模化制备工艺的探索;制备兼具高质子传导率和优异力学性能的质子交换膜;详细研究改性气体扩散层在不同的工况条件下对PEMFC性能的影响;开发具有优良耐蚀性和导电性的涂层或新型金属材料用于双极板。  相似文献   

9.
Developing new synthetic methods for the controlled synthesis of Pt‐based or non‐Pt nanocatalysts with low or no Pt loading to facilitate sluggish cathodic oxygen reduction reaction (ORR) and organics oxidation reactions is the key in the development of fuel‐cell technology. Various nanoparticles (NPs), with a range of size, shape, composition, and structure, have shown good potential to catalyze the sluggish cathodic and anodic reactions. In contrast to NPs, one‐dimensional (1D) nanomaterials such as nanowires (NWs), and nanotubes (NTs), exhibit additional advantages associated with their anisotropy, unique structure, and surface properties. The prominent characteristics of NWs and NTs include fewer lattice boundaries, a lower number of surface defect sites, and easier electron and mass transport for better electrocatalytic activity and lower vulnerability to dissolution, Ostwald ripening, and aggregation than Pt NPs for enhanced stability. An overview of recent advances in tuning 1D nanostructured Pt‐based, Pd‐based, or 1D metal‐free nanomaterials as advanced electrocatalysts is provided here, for boosting fuel‐cell reactions with high activity and stability, including the oxygen reduction reaction (ORR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR). After highlighting the different strategies developed so far for the synthesis of Pt‐based 1D nanomaterials with controlled size, shape, and composition, special emphasis is placed on the rational design of diverse NWs and NTs catalysts such as Pt‐based NWs or NTs, non‐Pt NTs, and carbon NTs with molecular engineering, etc. for enhancing the ORR, MOR, and EOR. Finally, some perspectives are highlighted on the development of more efficient fuel‐cell electrocatalysts featuring high stability, low cost, and enhanced performance, which are the key factors in accelerating the commercialization of fuel‐cell technology.  相似文献   

10.
Replacing precious and nondurable Pt catalysts with cheap and commercially available materials to facilitate sluggish cathodic oxygen reduction reaction (ORR) is a key issue in the development of fuel cell technology. The recently developed cost effective and highly stable metal‐free catalysts reveal comparable catalytic activity and significantly better fuel tolerance than that of current Pt‐based catalysts; therefore, they can serve as feasible Pt alternatives for the next generation of ORR electrocatalysts. Their promising electrocatalytic properties and acceptable costs greatly promote the R&D of fuel cell technology. This review provides an overview of recent advances in state‐of‐the‐art nanostructured metal‐free electrocatalysts including nitrogen‐doped carbons, graphitic‐carbon nitride (g‐C3N4)‐based hybrids, and 2D graphene‐based materials. A special emphasis is placed on the molecular design of these electrocatalysts, origin of their electrochemical reactivity, and ORR pathways. Finally, some perspectives are highlighted on the development of more efficient ORR electrocatalysts featuring high stability, low cost, and enhanced performance, which are the key factors to accelerate the commercialization of fuel cell technology.  相似文献   

11.
Facile fabrication of advanced catalysts toward oxygen reduction reaction with improving activity and stability is significant for proton‐exchange membrane fuel cells. Based on a generic solid‐state reaction, this study reports a modified hydrogen‐assisted, gas‐phase synthesis for facile, scalable production of surfactant‐free, thin, platinum‐based nanowire‐network electrocatalysts. The free‐standing platinum and platinum–nickel alloy nanowires show improvements of up to 5.1 times and 10.9 times for mass activity with a minimum 2.6% loss after an accelerated durability test for 10k cycles; 8.5 times and 13.8 times for specific activity, respectively, compared to commercial Pt/C catalyst. In addition, combined with a wet impregnation method, different substrate‐materials‐supported platinum‐based nanowires are obtained, which paves the way to practical application as a next‐generation supported catalyst to replace Pt/C. The growth stages and formation mechanism are investigated by an in situ transmission electron microscopy study. It reveals that the free‐standing platinum nanowires form in the solid state via metal‐surface‐diffusion‐assisted oriented attachment of individual nanoparticles, and the interaction with gas molecules plays a critical role, which may represent a gas‐molecular‐adsorbate‐modified growth in catalyst preparation.  相似文献   

12.
The oxygen reduction reaction (ORR) plays an important role in the fields of energy storage and conversion technologies, including metal–air batteries and fuel cells. The development of nonprecious metal electrocatalysts with both high ORR activity and durability to replace the currently used costly Pt‐based catalyst is critical and still a major challenge. Herein, a facile and scalable method is reported to prepare ZIF‐8 with single ferrocene molecules trapped within its cavities (Fc@ZIF‐8), which is utilized as precursor to porous single‐atom Fe embedded nitrogen‐doped carbon (Fe–N–C) during high temperature pyrolysis. The catalyst shows a half‐wave potential (E1/2) of 0.904 V, 67 mV higher than commercial Pt/C catalyst (0.837 V), which is among the best compared with reported results for ORR. Significant electrochemical properties are attributed to the special configuration of Fc@ZIF‐8 transforming into a highly dispersed iron–nitrogen coordination moieties embedded carbon matrix.  相似文献   

13.
Nitrogen‐doped carbon morphologies have been proven to be better alternatives to Pt in polymer‐electrolyte membrane (PEM) fuel cells. However, efficient modulation of the active sites by the simultaneous escalation of the porosity and nitrogen doping, without affecting the intrinsic electrical conductivity, still remains to be solved. Here, a simple strategy is reported to solve this issue by treating single‐walled carbon nanohorn (SWCNH) with urea at 800 °C. The resulting nitrogen‐doped carbon nanohorn shows a high surface area of 1836 m2 g?1 along with an increased electron conductivity, which are the pre‐requisites of an electrocatalyst. The nitrogen‐doped nanohorn annealed at 800 °C (N‐800) also shows a high oxygen reduction activity (ORR). Because of the high weight percentage of pyridinic nitrogen coordination in N‐800, the present catalyst shows a clear 4‐electron reduction pathway at only 50 mV overpotential and 16 mV negative shift in the half‐wave potential for ORR compared to Pt/C along with a high fuel selectivity and electrochemical stability. More importantly, a membrane electrode assembly (MEA) based on N‐800 provides a maximum power density of 30 mW cm?2 under anion‐exchange membrane fuel cell (AEMFC) testing conditions. Thus, with its remarkable set of physical and electrochemical properties, this material has the potential to perform as an efficient Pt‐free electrode for AEMFCs.  相似文献   

14.
Electrochemical energy conversion and storage devices such as fuel cells and metal–air batteries have been extensively studied in recent decades for their excellent conversion efficiency, high energy capacity, and low environmental impact. However, sluggish kinetics of the oxygen‐related reactions at air cathodes, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are still worth improving. Noble metals such as platinum (Pt), iridium (Ir), ruthenium (Ru) and their oxides are considered as the benchmark ORR and OER electrocatalysts, but they are expensive and prone to be poisoned due to the fuel crossover effect, and may suffer from agglomeration and leaching after long‐term usage. To mitigate these limits, it is highly desirable to design alternative ORR/OER electrocatalysts with prominent performance. Metal–organic frameworks (MOFs) are a class of porous crystalline materials consisting metal ions/clusters coordinated by organic ligands. Their crystalline structure, tunable pore size and high surface area afford them wide opportunities as catalytic materials. This Review covers MOF‐derived ORR/OER catalysts in electrochemical energy conversion, with a focus on the different strategies of material design and preparation, such as composition control and nanostructure fabrication, to improve the activity and durability of MOF‐derived electrocatalysts.  相似文献   

15.
Single wall carbon nanohorns (SWNH), produced by AC arc discharge in air, were used as Pt and PtRu supports in polymer electrolyte membrane fuel cells (PEMFC). These electrocatalysts were compared with equivalent electrocatalysts supported on commercial carbon back. The SWNH were characterized by differential thermal analysis (DTA), TEM, SEM, and XRD. The produced SWNH were 84.5 wt% pure, containing 3 wt% of amorphous carbon and 12.5 wt% of graphitic carbon. SWNH were used as electrocatalyst supports and tested in the electrodes of two types of polymer electrolyte fuel cells: H2-fed PEMFC and direct methanol fuel cells (DMFC). The electrocatalyst nanoparticles anchored on both carbon supports were ca. 2.5 nm in diameter obtained by employing ethylene glycol as the reducing agent. The use of SWNH showed catalytic activities 60% higher than using carbon black as the electrocatalyst support in both types of fuel cells.  相似文献   

16.
Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm?2). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN4 active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates.  相似文献   

17.
Efficient, low‐cost catalysts are desirable for the sluggish oxygen reduction reaction (ORR). Herein, UIO‐66‐NH2‐derived multi‐element (Fe, S, N) co‐doped porous carbon catalyst is reported, Fe/N/S‐PC, with an octahedral morphology, a well‐defined mesoporous structure, and highly dispersed doping elements, synthesized by a double‐solvent diffusion‐pyrolysis method (DSDPM). The morphology of the UIO‐66‐NH2 precursor is perfectly inherited by the derived carbon material, resulting in a high surface area, a well‐defined mesoporous structure, and atomic‐level dispersion of the doping elements. Fe/N/S‐PC demonstrates outstanding catalytic activity and durability for the ORR in both alkaline and acidic solutions. In 0.1 m KOH, its half‐potential reaches 0.87 V (vs reversible hydrogen electrode (RHE)), 30 mV more positive than that of a 20 wt% Pt/C catalyst. In 0.1 m HClO4, it reaches 0.785 V (vs RHE), only 65 mV less than that of Pt/C. The catalyst also exhibits excellent performance in acidic hydrogen/oxygen proton exchange membrane fuel cells. A membrane electrode assembly (MEA) with the catalyst as the cathode reaches 700 mA·cm‐2 at 0.6 V and a maximum power density of 553 mW·cm‐2, ranking it among the best MEAs with a nonprecious metal catalyst as the cathode.  相似文献   

18.
Carbon‐based nanocomposites have shown promising results in replacing commercial Pt/C as high‐performance, low cost, nonprecious metal‐based oxygen reduction reaction (ORR) catalysts. Developing unique nanostructures of active components (e.g., metal oxides) and carbon materials is essential for their application in next generation electrode materials for fuel cells and metal–air batteries. Herein, a general approach for the production of 1D porous nitrogen‐doped graphitic carbon fibers embedded with active ORR components, (M/MOx, i.e., metal or metal oxide nanoparticles) using a facile two‐step electrospinning and annealing process is reported. Metal nanoparticles/nanoclusters nucleate within the polymer nanofibers and subsequently catalyze graphitization of the surrounding polymer matrix and following oxidation, create an interconnected graphite–metal oxide framework with large pore channels, considerable active sites, and high specific surface area. The metal/metal oxide@N‐doped graphitic carbon fibers, especially Co3O4, exhibit comparable ORR catalytic activity but superior stability and methanol tolerance versus Pt in alkaline solutions, which can be ascribed to the synergistic chemical coupling effects between Co3O4 and robust 1D porous structures composed of interconnected N‐doped graphitic nanocarbon rings. This finding provides a novel insight into the design of functional electrocatalysts using electrospun carbon nanomaterials for their application in energy storage and conversion fields.  相似文献   

19.
Bifunctional electrocatalysis for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) constitutes the bottleneck of various sustainable energy devices and systems like rechargeable metal–air batteries. Emerging catalyst materials are strongly requested toward superior electrocatalytic activities and practical applications. In this study, transition metal hydroxysulfides are presented as bifunctional OER/ORR electrocatalysts for Zn–air batteries. By simply immersing Co‐based hydroxide precursor into solution with high‐concentration S2?, transition metal hydroxides convert to hydroxysulfides with excellent morphology preservation at room temperature. The as‐obtained Co‐based metal hydroxysulfides are with high intrinsic reactivity and electrical conductivity. The electron structure of the active sites is adjusted by anion modulation. The potential for 10 mA cm?2 OER current density is 1.588 V versus reversible hydrogen electrode (RHE), and the ORR half‐wave potential is 0.721 V versus RHE, with a potential gap of 0.867 V for bifunctional oxygen electrocatalysis. The Co3FeS1.5(OH)6 hydroxysulfides are employed in the air electrode for a rechargeable Zn–air battery with a small overpotential of 0.86 V at 20.0 mA cm?2, a high specific capacity of 898 mAh g?1, and a long cycling life, which is much better than Pt and Ir‐based electrocatalyst in Zn–air batteries.  相似文献   

20.
Renewable energy technology has been considered as a “MUST” option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high‐performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal–air batteries, and electrode materials for batteries and supercapacitors, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号