首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immune checkpoint blockade (ICB) is demonstrating great potential in cancer immunotherapy nowadays. Yet, the low response rate to ICB remains an urgent challenge for tumor immunotherapy. A pH and matrix metalloproteinase dual‐sensitive micellar nanocarrier showing spatio‐temporally controlled release of anti‐PD‐1 antibody (aPD‐1) and paclitaxel (PTX) in solid tumors is prepared to realize synergistic cancer chemoimmunotherapy. Antitumor immunity can be activated by PTX‐induced immunogenic cell death (ICD), while aPD‐1 blocks the PD‐1/PD‐L1 axis to suppress the immune escape due to PTX‐induced PD‐L1 up‐regulation, thus resulting in a synergistic antitumor chemoimmunotherapy. Through decoration with a sheddable polyethylene glycol (PEG) shell, the nanodrug may better accumulate in tumors to boost the synergistic antitumor treatment in a mouse melanoma model. The present study demonstrates a potent antitumor chemoimmunotherapy utilizing tumor microenvironment‐sensitive micelles bearing a sheddable PEG layer to mediate site‐specific sequential release of aPD‐1 and PTX.  相似文献   

2.
Cancer immunotherapy has achieved promising clinical responses in recent years owing to the potential of controlling metastatic disease. However, there is a limited research to prove the superior therapeutic efficacy of immunotherapy on breast cancer compared with melanoma and non‐small‐cell lung cancer because of its limited expression of PD‐L1, low infiltration of cytotoxic T lymphocytes (CTLs), and high level of myeloid‐derived suppressor cells (MDSCs). Herein, a multifunctional nanoplatform (FA‐CuS/DTX@PEI‐PpIX‐CpG nanocomposites, denoted as FA‐CD@PP‐CpG) for synergistic phototherapy (photodynamic therapy (PDT), photothermal therapy (PTT) included) and docetaxel (DTX)‐enhanced immunotherapy is successfully developed. The nanocomposites exhibit excellent PDT efficacy and photothermal conversion capability under 650 and 808 nm irradiation, respectively. More significantly, FA‐CD@PP‐CpG with no obvious side effects can remarkably inhibit the tumor growth in vivo based on a 4T1‐tumor‐bearing mice modal. A low dosage of loaded DTX in FA‐CD@PP‐CpG can promote infiltration of CTLs to improve efficacy of anti‐PD‐L1 antibody (aPD‐L1), suppress MDSCs, and effectively polarize MDSCs toward M1 phenotype to reduce tumor burden, further to enhance the antitumor efficacy. Taken together, FA‐CD@PP‐CpG nanocomposites offer an efficient synergistic therapeutic modality in docetaxel‐enhanced immunotherapy for clinical application of breast cancer.  相似文献   

3.
Recently, the development of multifunctional theranostic nanoplatforms to realize tumor‐specific imaging and enhanced cancer therapy via responding or modulating the tumor microenvironment (TME) has attracted tremendous interests in the field of nanomedicine. Herein, tungsten disulfide (WS2) nanoflakes with their surface adsorbed with iron oxide nanoparticles (IONPs) via self‐assembly are coated with silica and then subsequently with manganese dioxide (MnO2), on to which polyethylene glycol (PEG) is attached. The obtained WS2‐IO/S@MO‐PEG appears to be highly sensitive to pH, enabling tumor pH‐responsive magnetic resonance imaging with IONPs as the pH‐inert T2 contrast probe and MnO2 as the pH‐sensitive T1 contrast probe. Meanwhile, synergistic combination tumor therapy is realized with such WS2‐IO/S@MO‐PEG, by utilizing the strong near‐infrared light and X‐ray absorbance of WS2 for photothermal therapy (PTT) and enhanced cancer radiotherapy (RT), respectively, as well as the ability of MnO2 to decompose tumor endogenous H2O2 and relieve tumor hypoxia to further overcome hypoxia‐associated radiotherapy resistance. The combination of PTT and RT with WS2‐IO/S@MO‐PEG results in a remarkable synergistic effect to destruct tumors. This work highlights the promise of developing multifunction nanocomposites for TME‐specific imaging and TME modulation, aiming at precision cancer synergistic treatment.  相似文献   

4.
Phototherapy is a promising treatment method for cancer therapy. However, the various factors have greatly restricted phototherapy development, including the poor accumulation of photosensitizer in tumor, hypoxia in solid tumor tissue and systemic phototoxicity. Herein, a mitochondrial‐targeted multifunctional dye‐anchored manganese oxide nanoparticle (IR808@MnO NP) is developed for enhancing phototherapy of cancer. In this nanoplatform, IR808 as a small molecule dye acts as a tumor targeting ligand to make IR808@MnO NPs with capacity to actively target tumor cells and relocate finally in the mitochondria. Meanwhile, continuous production of oxygen (O2) and regulation of pH induced by the high reactivity and specificity of MnO NPs toward mitochondrial endogenous hydrogen peroxide (H2O2) could effectively modulate tumor hypoxia and lessen the tumor subacid environment. Large amounts of reactive oxide species (ROS) are generated during the reaction process between H2O2 and MnO NPs. Furthermore, under laser irradiation, IR808 in IR808@MnO NPs turns O2 into a highly toxic singlet oxygen (1O2) and generates hyperthermia. The results indicate that IR808@MnO NPs have the high efficiency of specific targeting of tumors, relieving tumor subacid environment, improving the tumor hypoxia environment, and generating large amounts of ROS to kill tumor cells. It is expected to have a wide application in treating cancer.  相似文献   

5.
Simulated sunlight has promise as a light source able to alleviate the severe pain associated with patients during photodynamic therapy (PDT); however, low sunlight utilization efficiency of traditional photosensitizers dramatically limits its application. Titanium‐dioxide‐nanoparticle–gold‐nanocluster–graphene (TAG) heterogeneous nanocomposites are designed to efficiently utilize simulated sunlight for melanoma skin cancer PDT. The narrow band gap in gold nanoclusters (Au NCs), and staggered energy bands between Au NCs, titanium dioxide nanoparticles (TiO2 NPs), and graphene can result in efficient utilization of simulated sunlight and separation of electron–hole pairs, facilitating the production of abundant hydroxyl and superoxide radicals. Under irradiation of simulated sunlight, TAG nanocomposites can trigger a series of toxicological responses in mouse B16F1 melanoma cells, such as intracellular reactive oxygen species production, glutathione depletion, heme oxygenase‐1 expression, and mitochondrial dysfunctions, resulting in severe cell death. Furthermore, intravenous or intratumoral administration of biocompatible TAG nanocomposites in B16F1‐tumor‐xenograft‐bearing mice can significantly inhibit tumor growth and cause severe pathological tumor tissue changes. All of these results demonstrate prominent simulated sunlight‐mediated PDT effects.  相似文献   

6.
Targeting programmed cell death protein 1 (PD‐1)/programmed death ligand 1 (PD‐L1) immunologic checkpoint blockade with monoclonal antibodies has achieved recent clinical success in antitumor therapy. However, therapeutic antibodies exhibit several issues such as limited tumor penetration, immunogenicity, and costly production. Here, Bristol‐Myers Squibb nanoparticles (NPs) are prepared using a reprecipitation method. The NPs have advantages including passive targeting, hydrophilic and nontoxic features, and a 100% drug loading rate. BMS‐202 is a small‐molecule inhibitor of the PD‐1/PD‐L1 interaction that is developed by BMS. Transfer of BMS‐202 NPs to 4T1 tumor‐bearing mice results in markedly slower tumor growth to the same degree as treatment with anti‐PD‐L1 monoclonal antibody (α‐PD‐L1). Consistently, the combination of Ce6 NPs with BMS‐202 NPs or α‐PD‐L1 in parallel shows more efficacious antitumor and antimetastatic effects, accompanied by enhanced dendritic cell maturation and infiltration of antigen‐specific T cells into the tumors. Thus, inhibition rates of primary and distant tumors reach >90%. In addition, BMS‐202 NPs are able to attack spreading metastatic lung tumors and offer immune‐memory protection to prevent tumor relapse. These results indicate that BMS‐202 NPs possess effects similar to α‐PD‐L1 in the therapies of 4T1 tumors. Therefore, this work reveals the possibility of replacing the antibody used in immunotherapy for tumors with BMS‐202 NPs.  相似文献   

7.
Poor deep tumor penetration and incomplete intracellular drug release remain challenges for antitumor nanomedicine application in clinical settings. Herein, a nanomedicine (RLPA‐NPs) is developed that can achieve prolonged blood circulation, deep tumor penetration, active‐targeting of cancer cells, endosome/lysosome escape, and intracellular selectivity self‐amplified drug release for effective drug delivery. The RLPA‐NPs are constructed by encapsulation of a pH‐sensitive polymer octadecylamine‐poly(aspartate‐1‐(3‐aminopropyl) imidazole) (OA‐P(Asp‐API)) and a ROS‐generation agent, β‐Lapachone (Lap), in micelles assembled by the tumor‐penetration peptide internalizing RGD (iRGD)‐modified ROS‐responsive paclitaxel (PTX)‐prodrug. iRGD could promote RLPA‐NPs penetration into deep tumor tissue, and specific targeting to cancer cells. After internalization by cancer cells through receptor‐mediated endocytosis, OA‐P(Asp‐API) can rapidly protonate in the endosome's acidic environment, resulting in RLPA‐NPs escape from the endosome through the “proton sponge effect”. At the same time, the RLPA‐NPs micelle disassembles, releasing Lap and PTX‐prodrug. Subsequently, the released Lap could generate ROS, consequently amplifying and accelerating PTX release to kill tumor cells. The in vitro and in vivo studies demonstrated that RLPA‐NPs can significantly improve the therapeutic effect compared to control groups. Therefore, RLPA‐NPs are a promising nanoplatform for overcoming multiple physiological and pathological barriers to enhance drug delivery.  相似文献   

8.
The tumor microenvironment (TME) has been increasingly recognized as a crucial contributor to tumorigenesis. Based on the unique TME for achieving tumor‐specific therapy, here a novel concept of photothermal‐enhanced sequential nanocatalytic therapy in both NIR‐I and NIR‐II biowindows is proposed, which innovatively changes the condition of nanocatalytic Fenton reaction for production of highly efficient hydroxyl radicals (?OH) and consequently suppressing the tumor growth. Evidence suggests that glucose plays a vital role in powering cancer progression. Encouraged by the oxidation of glucose to gluconic acid and H2O2 by glucose oxidase (GOD), an Fe3O4/GOD‐functionalized polypyrrole (PPy)‐based composite nanocatalyst is constructed to achieve diagnostic imaging‐guided, photothermal‐enhanced, and TME‐specific sequential nanocatalytic tumor therapy. The consumption of intratumoral glucose by GOD leads to the in situ elevation of the H2O2 level, and the integrated Fe3O4 component then catalyzes H2O2 into highly toxic ?OH to efficiently induce cancer‐cell death. Importantly, the high photothermal‐conversion efficiency (66.4% in NIR‐II biowindow) of the PPy component elevates the local tumor temperature in both NIR‐I and NIR‐II biowindows to substaintially accelerate and improve the nanocatalytic disproportionation degree of H2O2 for enhancing the nanocatalytic‐therapeutic efficacy, which successfully achieves a remarkable synergistic anticancer outcome with minimal side effects.  相似文献   

9.
Hypoxia is reported to participate in tumor progression, promote drug resistance, and immune escape within tumor microenvironment, and thus impair therapeutic effects including the chemotherapy and advanced immunotherapy. Here, a multifunctional biomimetic core–shell nanoplatform is reported for improving synergetic chemotherapy and immunotherapy. Based on the properties including good biodegradability and functionalities, the pH‐sensitive zeolitic imidazolate framework 8 embedded with catalase and doxorubicin constructs the core and serves as an oxygen generator and drug reservoir. Murine melanoma cell membrane coating on the core provides tumor targeting ability and elicits an immune response due to abundance of antigens. It is demonstrated that this biomimetic core–shell nanoplatform with oxygen generation can be partial to accumulate in tumor and downregulate the expression of hypoxia‐inducible factor 1α, which can further enhance the therapeutic effects of chemotherapy and reduce the expression of programmed death ligand 1 (PD‐L1). Combined with immune checkpoints blockade therapy by programmed death 1 (PD‐1) antibody, the dual inhibition of the PD‐1/PD‐L1 axis elicits significant immune response and presents a robust effect in lengthening tumor recurrent time and inhibiting tumor metastasis. Consequently, the multifunctional nanoplatform provides a potential strategy of synergetic chemotherapy and immunotherapy.  相似文献   

10.
Herein, ferumoxytol (Fer) capped antiprogrammed cell death‐ligand 1 (PD‐L1) antibodies (aPD‐L1) loaded ultralarge pore mesoporous silica nanoparticles (Fer‐ICB‐UPMSNPs) are formulated for a sequential magnetic resonance (MR) image guided local immunotherapy after cabazitaxel (Cbz) chemotherapy for the treatment of prostate cancer (PC). The highly porous framework of UPMSNP provides a large capacity for aPD‐L1. Fer capping of the pores extends the period of aPD‐L1 release and provides MR visibility of the aPD‐L1 loaded UPMSNP. As‐chosen Cbz chemotherapy prior to the local immunotherapy induces strong immunogenic cell death, dendritic cell maturation, and upregulation of PD‐L1 of tumor cells. Finally, tumor growth inhibition of sequential MR image‐guided local delivery of Fer‐ICB‐UPMSNPs and a tumor specific adoptive immune reaction are demonstrated in the pretreated Tramp C1 PC mouse model with Cbz chemotherapy. The tumor suppression is superior to those obtained with systemic ICB treatment after Cbz, only Fer‐ICB‐UPMSNP or only Cbz. As a proof‐of concept, MR image‐guided local ICB immunotherapy using Fer‐ICB‐UPMSNPs after chemotherapy suggests a new perspective of translational local immunotherapy for patients who are treated with standard chemotherapies.  相似文献   

11.
Engineering functional nanomaterials with high therapeutic efficacy and minimum side effects has increasingly become a promising strategy for cancer treatment. Herein, a reactive oxygen species (ROS) enhanced combination chemotherapy platform is designed via a biocompatible metal‐polyphenol networks self‐assembly process by encapsulating doxorubicin (DOX) and platinum prodrugs in nanoparticles. Both DOX and platinum drugs can activate nicotinamide adenine dinucleotide phosphate oxidases, generating superoxide radicals (O2??). The superoxide dismutase‐like activity of polyphenols can catalyze H2O2 generation from O2??. Finally, the highly toxic HO? free radicals are generated by a Fenton reaction. The ROS HO? can synergize the chemotherapy by a cascade of bioreactions. Positron emission tomography imaging of 89Zr‐labeled as‐prepared DOX@Pt prodrug Fe3+ nanoparticles (DPPF NPs) shows prolonged blood circulation and high tumor accumulation. Furthermore, the DPPF NPs can effectively inhibit tumor growth and reduce the side effects of anticancer drugs. This study establishes a novel ROS promoted synergistic nanomedicine platform for cancer therapy.  相似文献   

12.
Hypoxia severely impedes photodynamic therapy (PDT) efficiency. Worse still, considerable tumor metastasis will occur after PDT. Herein, an organic superoxide radical (O2??) nano‐photogenerator as a highly effcient type I photosensitizer with robust vascular‐disrupting efficiency to combat these thorny issues is designed. Boron difluoride dipyrromethene (BODIPY)‐vadimezan conjugate (BDPVDA) is synthesized and enwrapped in electron‐rich polymer‐brushes methoxy‐poly(ethylene glycol)‐b‐poly(2‐(diisopropylamino) ethyl methacrylate) (mPEG‐ PPDA) to afford nanosized hydrophilic type I photosensitizer (PBV NPs). Owing to outstanding core–shell intermolecular electron transfer between BDPVDA and mPEG‐PPDA, remarkable O2?? can be produced by PBV NPs under near‐infrared irradiation even in severe hypoxic environment (2% O2), thus to accomplish effective hypoxic‐tumor elimination. Simultaneously, the efficient ester‐bond hydrolysis of BDPVDA in the acidic tumor microenvironment allows vadimezan release from PBV NPs to disrupt vasculature, facilitating the shut‐down of metastatic pathways. As a result, PBV NPs will not only be powerful in resolving the paradox between traditional type II PDT and hypoxia, but also successfully prevent tumor metastasis after type I PDT treatment (no secondary‐tumors found in 70 days and 100% survival rate), enabling enhancement of existing hypoxic‐and‐metastatic tumor treatment.  相似文献   

13.
The application of nanoparticles (NPs) to drug delivery has led to the development of novel nanotherapeutics for the treatment of various diseases including cancer. However, clinical use of NP‐mediated drug delivery has not always translated into improved survival of cancer patients, in part due to the suboptimal properties of NP platforms, such as premature drug leakage during preparation, storage, or blood circulation, lack of active targeting to tumor tissue and cells, and poor tissue penetration. Herein, an innovative reactive oxygen species (ROS)‐responsive polyprodrug is reported that can self‐assemble into stable NPs with high drug loading. This new NP platform is composed of the following key components: (i) polyprodrug inner core that can respond to ROS for triggered release of intact therapeutic molecules, (ii) polyethylene glycol (PEG) outer shell to prolong blood circulation; and (iii) surface‐encoded internalizing RGD (iRGD) to enhance tumor targeting and tissue penetration. These targeted ROS‐responsive polyprodrug NPs show significant inhibition of tumor cell growth both in vitro and in vivo.  相似文献   

14.
Several decades of research have identified the specific tumor microenvironment (TME) to develop promising nanotheranostics, such as pH‐sensitive imaging, acidity‐sensitive starving therapy, and hydrogen peroxide‐activated chemotherapy, etc. Herein, a novel TME‐mediated nanoplatform employing antiferromagnetic pyrite nanocubes is presented, exploiting the intratumoral, overproduced peroxide for self‐enhanced magnetic resonance imaging (MRI) and photothermal therapy (PTT)/chemodynamic therapy (CDT). Through the activation of excessive peroxide in the tumor microenvironment, pyrite can lead to in situ surface oxidation and generate hydroxyl radicals to kill tumor cells (i.e., CDT). The increase of the valence state of surface Fe significantly promotes the performance of MRI accompanied by CDT. Furthermore, the localized heat by photothermal treatment can accelerate the intratumoral Fenton process, enabling a synergetic PTT/CDT. To our best knowledge, this is the first study to use the TME‐response valence‐variable strategy based on pyrite for developing a synergetic nanotheranostic, which will open up a new dimension for the design of other TME‐based anticancer strategies.  相似文献   

15.
The unique tumor microenvironment (TME) facilitates cancer proliferation and metastasis, and it is hard to cure cancer completely via monotherapy. Herein, a multifunctional cascade bioreactor based on hollow mesoporous Cu2MoS4 (CMS) loaded with glucose oxidase (GOx) is constructed for synergetic cancer therapy by chemo‐dynamic therapy (CDT)/starvation therapy/phototherapy/immunotherapy. The CMS harboring multivalent elements (Cu1+/2+, Mo4+/6+) exhibit Fenton‐like, glutathione (GSH) peroxidase‐like and catalase‐like activity. Once internalized into the tumor, CMS could generate ·OH for CDT via Fenton‐like reaction and deplete overexpressed GSH in TME to alleviate antioxidant capability of the tumors. Moreover, under hypoxia TME, the catalase‐like CMS could react with endogenous H2O2 to generate O2 for activating the catalyzed oxidation of glucose by GOx for starvation therapy accompanied with the regeneration of H2O2. The regenerated H2O2 can devote to Fenton‐like reaction for realizing GOx‐catalysis‐enhanced CDT. Meanwhile, the CMS under 1064 nm laser irradiation shows remarkable tumor‐killing ability by phototherapy due to its excellent photothermal conversion efficiency (η = 63.3%) and cytotoxic superoxide anion (·O2?) generation performance. More importantly, the PEGylated CMS@GOx‐based synergistic therapy combined with checkpoint blockade therapy could elicit robust immune responses for both effectively ablating primary tumors and inhibiting cancer metastasis.  相似文献   

16.
1D peptide nanostructures (i.e., peptide nanotubes, PNTs) exhibit tunable chemo‐physical properties and functions such as improved tissue adhesion, increased cellular uptake, and elongated blood circulation. In this study, the application of PNTs as a desirable 1D template for biomineralization of Cu2?xS nanoparticles (Cu2?xS NPs, x = 1–2) is reported. Monodisperse Cu2?xS NPs are uniformly coated on the peptide nanotubes owing to the specific high binding affinity of Cu ions to the imidazole groups exposed on the surface of nanotubes. The Cu2?xS NP–coated PNTs are further covalently grafted with an oxaliplatin prodrug (Pt–CuS–PNTs) to construct a versatile nanoplatform for combination cancer therapy. Upon 808 nm laser illumination, the nanoplatform induces significant hyperthermia effect and elicits reactive oxygen species generation through electron transfer and Fenton‐like reaction. It is demonstrated that the versatile nanoplatform dramatically inhibits tumor growth and lung metastasis of melanoma in a B16‐F10 melanoma tumor‐bearing mouse model by combined photo‐ and chemotherapy. This study highlights the ability of PNTs for biomineralization of metal ions and the promising potential of such nanoplatforms for cancer treatment.  相似文献   

17.
Integration of magnetic resonance imaging (MRI) and other imaging modalities is promising to furnish complementary information for accurate cancer diagnosis and imaging‐guided therapy. However, most gadolinium (Gd)–chelator MR contrast agents are limited by their relatively low relaxivity and high risk of released‐Gd‐ions‐associated toxicity. Herein, a radionuclide‐64Cu‐labeled doxorubicin‐loaded polydopamine (PDA)–gadolinium‐metallofullerene core–satellite nanotheranostic agent (denoted as CDPGM) is developed for MR/photoacoustic (PA)/positron emission tomography (PET) multimodal imaging‐guided combination cancer therapy. In this system, the near‐infrared (NIR)‐absorbing PDA acts as a platform for the assembly of different moieties; Gd3N@C80, a kind of gadolinium metallofullerene with three Gd ions in one carbon cage, acts as a satellite anchoring on the surface of PDA. The as‐prepared CDPGM NPs show good biocompatibility, strong NIR absorption, high relaxivity (r 1 = 14.06 mM?1 s?1), low risk of release of Gd ions, and NIR‐triggered drug release. In vivo MR/PA/PET multimodal imaging confirms effective tumor accumulation of the CDPGM NPs. Moreover, upon NIR laser irradiation, the tumor is completely eliminated with combined chemo‐photothermal therapy. These results suggest that the CDPGM NPs hold great promise for cancer theranostics.  相似文献   

18.
The need for better imaging assisted cancer therapy calls for new biocompatible agents with excellent imaging and therapeutic capabilities. This study successfully fabricates albumin‐cooperated human serum albumin (HSA)‐GGD‐ICG nanoparticles (NPs), which are comprised of a magnetic resonance (MR) contrast agent, glycyrrhetinic‐acid‐modified gadolinium (III)‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (GGD), and a fluorescence (FL) dye, indocyanine green (ICG), for multimodal MR/FL imaging assisted cancer therapy. These HSA‐GGD‐ICG NPs with excellent biocompatibility are stable under physiological conditions, and exhibit enhanced T1 contrast capability and improved fluorescence imaging capacity. In vitro experiments reveal an apparent effect of the NPs in killing tumor cells under low laser irradiation, due to the enhanced photothermal conversion efficiency (≈85.1%). Importantly, multimodal MR/FL imaging clearly shows the in vivo behaviors and the efficiency of tumor accumulation of HSA‐GGD‐ICG NPs, as confirmed by a pharmacokinetic study. With the guidance of multimodal imaging, photothermal therapy is subsequently conducted, which demonstrates again high photothermal conversion capability for eliminating tumors without relapse. Notably, real‐time monitoring of tumor ablation for prognosis and therapy evaluation is also achieved by MR imaging. This strategy of constructing nanoplatforms through albumin‐mediated methods is both convenient and efficient, which would enlighten the design of multimodal imaging assisted cancer therapy for potential clinical translation.  相似文献   

19.
Photothermal therapy (PTT) usually requires hyperthermia >50 °C for effective tumor ablation, which inevitably induces heating damage to the surrounding normal tissues/organs. Moreover, low tumor retention and high liver accumulation are the two main obstacles that significantly limit the efficacy and safety of many nanomedicines. To solve these problems, a smart albumin‐based tumor microenvironment‐responsive nanoagent is designed via the self‐assembly of human serum albumin (HSA), dc‐IR825 (a cyanine dye and a photothermal agent), and gambogic acid (GA, a heat shock protein 90 (HSP90) inhibitor and an anticancer agent) to realize molecular targeting‐mediated mild‐temperature PTT. The formed HSA/dc‐IR825/GA nanoparticles (NPs) can escape from mitochondria to the cytosol through mitochondrial disruption under near‐infrared (NIR) laser irradiation. Moreover, the GA molecules block the hyperthermia‐induced overexpression of HSP90, achieving the reduced thermoresistance of tumor cells and effective PTT at a mild temperature (<45 °C). Furthermore, HSA/dc‐IR825/GA NPs show pH‐responsive charge reversal, effective tumor accumulation, and negligible liver deposition, ultimately facilitating synergistic mild‐temperature PTT and chemotherapy. Taken together, the NIR‐activated NPs allow the release of molecular drugs more precisely, ablate tumors more effectively, and inhibit cancer metastasis more persistently, which will advance the development of novel mild‐temperature PTT‐based combination strategies.  相似文献   

20.
Malignant melanoma is a highly aggressive tumor resistant to chemotherapy. Therefore, the development of new highly effective therapeutic agents for the treatment of malignant melanoma is highly desirable. In this study, a new class of polymeric photothermal agents based on poly(N‐phenylglycine) (PNPG) suitable for use in near‐infrared (NIR) phototherapy of malignant melanoma is designed and developed. PNPG is obtained via polymerization of N‐phenylglycine (NPG). Carboxylate functionality of NPG allows building multifunctional systems using covalent bonding. This approach avoids complicated issues typically associated with preparation of polymeric photothermal agents. Moreover, PNPG skeleton exhibits pH‐responsive NIR absorption and an ability to generate reactive oxygen species, which makes its derivatives attractive photothermal therapy (PTT)/photodynamic therapy (PDT) dual‐modal agents with pH‐responsive features. PNPG is modified using hyaluronic acid (HA) and polyethylene glycol diamine (PEG‐diamine) acting as the coupling agent. The resultant HA‐modified PNPG (PNPG‐PEG‐HA) shows negligible cytotoxicity and effectively targets CD44‐overexpressing cancer cells. Furthermore, the results of in vitro and in vivo experiments reveal that PNPG‐PEG‐HA selectively kills B16 cells and suppresses malignant melanoma tumor growth upon exposure to NIR light (808 nm), indicating that PNPG‐PEG‐HA can serve as a very promising nanoplatform for targeted dual‐modality PTT/PDT of melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号