首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
Extrusion‐based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light‐emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer‐based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one‐pot custom built 3D‐printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light‐emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D‐printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next‐generation wearable and 3D‐structured optoelectronics, and validating the potential of 3D printing to achieve high‐performance integrated active electronic materials and devices.  相似文献   

4.
5.
6.
The additive manufacturing of energetic materials has received worldwide attention. Here, an ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach. The key additive in the ink is a hybrid polymer of poly(vinylidene fluoride) (PVDF) and hydroxy propyl methyl cellulose (HPMC) in which the former serves as an energetic initiator and a binder, and the latter is a thickening agent and the other binder, which can form a gel. The rheological shear‐thinning properties of the ink are critical to making the formulation at such high loadings printable. The Young's modulus of the printed stick is found to compare favorably with that of poly(tetrafluoroethylene) (PTFE), with a particle packing density at the theoretical maximum. The linear burn rate, mass burn rate, flame temperature, and heat flux are found to be easily adjusted by varying the fuel/oxidizer ratio. The average flame temperatures are as high as ≈2800 K with near‐complete combustion being evident upon examination of the postcombustion products.  相似文献   

7.
8.
9.
10.
The ability to create architected materials that possess both high stiffness and toughness remains an elusive goal, since these properties are often mutually exclusive. Natural materials, such as bone, overcome such limitations by combining different toughening mechanisms across multiple length scales. Here, a new method for creating architected lattices composed of core–shell struts that are both stiff and tough is reported. Specifically, these lattices contain orthotropic struts with flexible epoxy core–brittle epoxy shell motifs in the absence and presence of an elastomeric silicone interfacial layer, which are fabricated by a multicore–shell, 3D printing technique. It is found that architected lattices produced with a flexible core‐elastomeric interface‐brittle shell motif exhibit both high stiffness and toughness.  相似文献   

11.
激光选区烧结(SLS)属于3D打印技术,通过激光逐层烧结粉末并叠加成形制件。该技术可满足不同患者的个性化需求,在生物医疗领域特别在组织工程支架和医用植入体制备方面具有非常广阔的应用前景。作为生物医用材料最重要的组成部分,生物高分子材料近年来发展迅速,成为医疗领域研究的热点。文中重点介绍了左旋聚乳酸、聚己内酯、聚醚醚酮、聚乙烯醇四类常用于SLS技术的生物高分子及其复合材料,对其研究和应用现状进行综述,并对其性能和用途进行对比讨论,提出今后该领域的发展方向。  相似文献   

12.
Radio‐frequency (RF) electronics, which combine passive electromagnetic devices and active transistors to generate and process gigahertz (GHz) signals, provide a critical basis of ever‐pervasive wireless networks. While transistors are best realized by top‐down fabrication, relatively larger electromagnetic passives are within the reach of printing techniques. Here, direct writing of viscoelastic silver‐nanoparticle inks is used to produce a broad array of RF passives operating up to 45 GHz. These include lumped devices such as inductors and capacitors, and wave‐based devices such as transmission lines, their resonant networks, and antennas. Moreover, to demonstrate the utility of these printed RF passive structures in active RF electronic circuits, they are combined with discrete transistors to fabricate GHz self‐sustained oscillators and synchronized oscillator arrays that provide RF references, and wireless transmitters clocked by the oscillators. This work demonstrates the synergy of direct ink writing and RF electronics for wireless applications.  相似文献   

13.
Porous materials with multiple hierarchy levels can be useful as lightweight engineering structures, biomedical implants, flexible functional devices, and thermal insulators. Numerous routes have integrated bottom-up and top-down approaches for the generation of engineering materials with lightweight nature, complex structures, and excellent mechanical properties. It nonetheless remains challenging to generate ultralight porous materials with hierarchical architectures and multi-functionality. Here, the combined strategy based on Pickering emulsions and additive manufacturing leads to the development of ultralight conducting polymer foams with hierarchical pores and multifunctional performance. Direct writing of the emulsified inks consisting of the nano-oxidant—hydrated vanadium pentoxide nanowires—generated free-standing scaffolds, which are stabilized by the interfacial organization of the nanowires into network structures. The following in situ oxidative polymerization transforms the nano-oxidant scaffolds into foams consisting of a typical conducting polymer—polyaniline. The lightweight polyaniline foams featured by hierarchical pores and high surface areas show excellent performances in the applications of supercapacitor electrodes, planar micro-supercapacitors, and gas sensors. This emerging technology demonstrates the great potential of a combination of additive manufacturing with complex fluids for the generation of functional solids with lightweight nature and adjustable structure-function relationships.  相似文献   

14.
15.
16.
Functional anisotropic material gradients on multiple length scales and locations are omnipresent in natural systems. However, the vast majority of industrially fabricated objects, even those designed to augment, coexist and interact with natural systems, are homogenous or discrete in material composition. This paper presents an exploration into rapid fabrication with material gradients in the form of a variable property printing platform. A digital anisotropy approach and a variable-elasticity fabrication platform demonstrating the approach are presented. Prototype development methods and processes are presented and discussed in the context of its design applications. Current and future technological implications for functionally graded rapid prototyping across micro, meso and macro scales are reviewed and future directions discussed.  相似文献   

17.
Laser‐induced graphene (LIG), a graphene structure synthesized by a one‐step process through laser treatment of commercial polyimide (PI) film in an ambient atmosphere, has been shown to be a versatile material in applications ranging from energy storage to water treatment. However, the process as developed produces only a 2D product on the PI substrate. Here, a 3D LIG foam printing process is developed on the basis of laminated object manufacturing, a widely used additive‐manufacturing technique. A subtractive laser‐milling process to yield further refinements to the 3D structures is also developed and shown here. By combining both techniques, various 3D graphene objects are printed. The LIG foams show good electrical conductivity and mechanical strength, as well as viability in various energy storage and flexible electronic sensor applications.  相似文献   

18.
19.
20.
Shell‐core cellular composites are a unique class of cellular materials, where the base constituent is made of a composite material such that the best distinctive physical and/or mechanical properties of each phase of the composite are employed. In this work, the authors demonstrate the additive manufacturing of a nature inspired cellular three‐dimensional (3D), periodic, co‐continuous, and complex composite materials made of a hard‐shell and soft‐core system. The architecture of these composites is based on the Schoen's single Gyroidal triply periodic minimal surface. Results of mechanical testing show the possibility of having a wide range of mechanical properties by tuning the composition, volume fraction of core, shell thickness, and internal architecture of the cellular composites. Moreover, a change in deformation and failure mechanism is observed when employing a shell‐core composite system, as compared to the pure stiff polymeric standalone cellular material. This shell‐core configuration and Gyroidal topology allowed for accessing toughness values that are not realized by the constituent materials independently, showing the suitability of this cellular composite for mechanical energy absorption applications.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号