首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium‐metal batteries (LMBs), as one of the most promising next‐generation high‐energy‐density storage devices, are able to meet the rigid demands of new industries. However, the direct utilization of metallic lithium can induce harsh safety issues, inferior rate and cycle performance, or anode pulverization inside the cells. These drawbacks severely hinder the commercialization of LMBs. Here, an up‐to‐date review of the behavior of lithium ions upon deposition/dissolution, and the failure mechanisms of lithium‐metal anodes is presented. It has been shown that the primary causes consist of the growth of lithium dendrites due to large polarization and a strong electric field at the vicinity of the anode, the hyperactivity of metallic lithium, and hostless infinite volume changes upon cycling. The recent advances in liquid organic electrolyte (LOE) systems through modulating the local current density, anion depletion, lithium flux, the anode–electrolyte interface, or the mechanical strength of the interlayers are highlighted. Concrete strategies including tailoring the anode structures, optimizing the electrolytes, building artificial anode–electrolyte interfaces, and functionalizing the protective interlayers are summarized in detail. Furthermore, the challenges remaining in LOE systems are outlined, and the future perspectives of introducing solid‐state electrolytes to radically address safety issues are presented.  相似文献   

2.
There has been a renewed interest in using lithium (Li) metal as an anode material for rechargeable batteries owing to its high theoretical capacity of 3860 mA h g?1. Despite extensive research, modifications to effectively inhibit Li dendrite growth still result in decreased Li loading and Li utilization. As a result, real capacities are often lower than values expected, if the total mass of the electrode is taken into consideration. Herein, a lightweight yet mechanically robust carbon nanotube (CNT) paper is demonstrated as a freestanding framework to accommodate Li metal with a Li mass fraction of 80.7 wt%. The highly conductive network made of sp2‐hybridized carbon effectively inhibits formation of Li dendrites and affords a favorable coulombic efficiency of >97.5%. Moreover, the Li/CNT electrode retains practical areal and gravimetric capacities of 10 mA h cm?2 and 2830 mA h g?1 (vs the mass of electrode), respectively, with 90.9% Li utilization for 1000 cycles at a current density of 10 mA cm?2. It is demonstrated that the robust and expandable nature is a distinguishing feature of the CNT paper as compared to other 3D scaffolds, and is a key factor that leads to the improved electrochemical performance of the Li/CNT anodes.  相似文献   

3.
For its high theoretical capacity and low redox potential, Li metal is considered to be one of the most promising anode materials for next‐generation batteries. However, practical application of a Li‐metal anode is impeded by Li dendrites, which are generated during the cycling of Li plating/stripping, leading to safety issues. Researchers attempt to solve this problem by spatially confining the Li plating. Yet, the effective directing of Li deposition into the confined space is challenging. Here, an interlayer is constructed between a graphitic carbon nitrite layer (g‐C3N4) and carbon cloth (CC), enabling site‐directed dendrite‐free Li plating. The g‐C3N4/CC as an anode scaffold enables extraordinary cycling stability for over 1500 h with a small overpotential of ≈80 mV at 2 mA cm?2. Furthermore, prominent battery performance is also demonstrated in a full cell (Li/g‐C3N4/CC as anode and LiCoO2 as cathode) with high Coulombic efficiency of 99.4% over 300 cycles.  相似文献   

4.
5.
Considerable efforts are devoted to relieve the critical lithium dendritic and volume change problems in the lithium metal anode. Constructing uniform Li+ distribution and lithium “host” are shown to be the most promising strategies to drive practical lithium metal anode development. Herein, a uniform Li nucleation/growth behavior in a confined nanospace is verified by constructing vertical graphene on a 3D commercial copper mesh. The difference of solid‐electrolyte interphase (SEI) composition and lithium growth behavior in the confined nanospace is further demonstrated by in‐depth X‐ray photoelectron spectrometer (XPS) and line‐scan energy dispersive X‐ray spectroscopic (EDS) methods. As a result, a high Columbic efficiency of 97% beyond 250 cycles at a current density of 2 mA cm?2 and a prolonged lifespan of symmetrical cell (500 cycles at 5 mA cm?2) can be easily achieved. More meaningfully, the solid‐state lithium metal cell paired with the composite lithium anode and LiNi0.5Co0.2Mn0.3O2 (NCM) as the cathode also demonstrate reduced polarization and extended cycle. The present confined nanospace–derived hybrid anode can further promote the development of future all solid‐state lithium metal batteries.  相似文献   

6.
7.
8.
9.
Lithium metal is considered as the most promising anode material due to its high theoretical specific capacity and the low electrochemical reduction potential. However, severe dendrite problems have to be addressed for fabricating stable and rechargeable batteries (e.g., lithium–iodine batteries). To fabricate a high‐performance lithium–iodine (Li–I2) battery, a 3D stable lithium metal anode is prepared by loading of molten lithium on carbon cloth doped with nitrogen and phosphorous. Experimental observations and theoretical calculation reveal that the N,P codoping greatly improves the lithiophilicity of the carbon cloth, which not only enables the uniform loading of molten lithium but also facilitates reversible lithium stripping and plating. Dendrites formation can thus be significantly suppressed at a 3D lithium electrode, leading to stable voltage profiles over 600 h at a current density of 3 mA cm?2. A fuel cell with such an electrode and a lithium–iodine cathode shows impressive long‐term stability with a capacity retention of around 100% over 4000 cycles and enhanced high‐rate capability. These results demonstrate the promising applications of 3D stable lithium metal anodes in next‐generation rechargeable batteries.  相似文献   

10.
The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single‐ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long‐term working conditions. Herein, a robust dual‐phase artificial interface is constructed, where not only the single‐ion‐conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al‐doped Li6.75La3Zr1.75Ta0.25O12‐based bottom layer and a lithiated Nafion top layer. The as‐constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li‐ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite‐free Li deposition behavior in a working battery.  相似文献   

11.
Silicon has been intensively studied as an anode material for lithium‐ion batteries (LIB) because of its exceptionally high specific capacity. However, silicon‐based anode materials usually suffer from large volume change during the charge and discharge process, leading to subsequent pulverization of silicon, loss of electric contact, and continuous side reactions. These transformations cause poor cycle life and hinder the wide commercialization of silicon for LIBs. The lithiation and delithiation behaviors, and the interphase reaction mechanisms, are progressively studied and understood. Various nanostructured silicon anodes are reported to exhibit both superior specific capacity and cycle life compared to commercial carbon‐based anodes. However, some practical issues with nanostructured silicon cannot be ignored, and must be addressed if it is to be widely used in commercial LIBs. This Review outlines major impactful work on silicon‐based anodes, and the most recent research directions in this field, specifically, the engineering of silicon architectures, the construction of silicon‐based composites, and other performance‐enhancement studies including electrolytes and binders. The burgeoning research efforts in the development of practical silicon electrodes, and full‐cell silicon‐based LIBs are specially stressed, which are key to the successful commercialization of silicon anodes, and large‐scale deployment of next‐generation high energy density LIBs.  相似文献   

12.
13.
Lithium (Li) metal‐based battery is among the most promising candidates for next‐generation rechargeable high‐energy‐density batteries. Carbon materials are strongly considered as the host of Li metal to relieve the powdery/dendritic Li formation and large volume change during repeated cycles. Herein, we describe the formation of a thin lithiophilic LiC6 layer between carbon fibers (CFs) and metallic Li in Li/CF composite anode obtained through a one‐step rolling method. An electron deviation from Li to carbon elevates the negativity of carbon atoms after Li intercalation as LiC6, which renders stronger binding between carbon framework and Li ions. The Li/CF | Li/CF batteries can operate for more than 90 h with a small polarization voltage of 120 mV at 50% discharge depth. The Li/CF | sulfur pouch cell exhibits a high discharge capacity of 3.25 mAh cm?2 and a large capacity retention rate of 98% after 100 cycles at 0.1 C. It is demonstrated that the as‐obtained Li/CF composite anode with lithiophilic LiC6 layers can effectively alleviate volume expansion and hinder dendritic and powdery morphology of Li deposits. This work sheds fresh light on the role of interfacial layers between host structure and Li metal in composite anode for long‐lifespan working batteries.  相似文献   

14.
With extremely high specific capacity, silicon has attracted enormous interest as a promising anode material for next‐generation lithium‐ion batteries. However, silicon suffers from a large volume variation during charge/discharge cycles, which leads to the pulverization of the silicon and subsequent separation from the conductive additives, eventually resulting in rapid capacity fading and poor cycle life. Here, it is shown that the utilization of a self‐healable supramolecular polymer, which is facilely synthesized by copolymerization of tert‐butyl acrylate and an ureido‐pyrimidinone monomer followed by hydrolysis, can greatly reduce the side effects caused by the volume variation of silicon particles. The obtained polymer is demonstrated to have an excellent self‐healing ability due to its quadruple‐hydrogen‐bonding dynamic interaction. An electrode using this self‐healing supramolecular polymer as binder exhibits an initial discharge capacity as high as 4194 mAh g−1 and a Coulombic efficiency of 86.4%, and maintains a high capacity of 2638 mAh g−1 after 110 cycles, revealing significant improvement of the electrochemical performance in comparison with that of Si anodes using conventional binders. The supramolecular binder can be further applicable for silicon/carbon anodes and therefore this supramolecular strategy may increase the choice of amendable binders to improve the cycle life and energy density of high‐capacity Li‐ion batteries.  相似文献   

15.
Metallic lithium (Li) is a promising anode material for next‐generation rechargeable batteries. However, the dendrite growth of Li and repeated formation of solid electrolyte interface during Li plating and stripping result in low Coulombic efficiency, internal short circuits, and capacity decay, hampering its practical application. In the development of stable Li metal anode, the current collector is recognized as a critical component to regulate Li plating. In this work, a lithiophilic Cu‐CuO‐Ni hybrid structure is synthesized as a current collector for Li metal anodes. The low overpotential of CuO for Li nucleation and the uniform Li+ ion flux induced by the formation of Cu nanowire arrays enable effective suppression of the growth of Li dendrites. Moreover, the surface Cu layer can act as a protective layer to enhance structural durability of the hybrid structure in long‐term running. As a result, the Cu‐CuO‐Ni hybrid structure achieves a Coulombic efficiency above 95% for more than 250 cycles at a current density of 1 mA cm?2 and 580 h (290 cycles) stable repeated Li plating and stripping in a symmetric cell.  相似文献   

16.
17.
18.
Lithium–sulfur (Li–S) batteries, based on the redox reaction between elemental sulfur and lithium metal, have attracted great interest because of their inherently high theoretical energy density. However, the severe polysulfide shuttle effect and sluggish reaction kinetics in sulfur cathodes, as well as dendrite growth in lithium‐metal anodes are great obstacles for their practical application. Herein, a two‐in‐one approach with superhierarchical cobalt‐embedded nitrogen‐doped porous carbon nanosheets (Co/N‐PCNSs) as stable hosts for both elemental sulfur and metallic lithium to improve their performance simultaneously is reported. Experimental and theoretical results reveal that stable Co nanoparticles, elaborately encapsulated by N‐doped graphitic carbon, can work synergistically with N heteroatoms to reserve the soluble polysulfides and promote the redox reaction kinetics of sulfur cathodes. Moreover, the high‐surface‐area pore structure and the Co‐enhanced lithiophilic N heteroatoms in Co/N‐PCNSs can regulate metallic lithium plating and successfully suppress lithium dendrite growth in the anodes. As a result, a full lithium–sulfur cell constructed with Co/N‐PCNSs as two‐in‐one hosts demonstrates excellent capacity retention with stable Coulombic efficiency.  相似文献   

19.
Despite the recent attention for Li metal anode (LMA) with high theoretical specific capacity of ≈ 3860 mA h g?1, it suffers from not enough practical energy densities and safety concerns originating from the excessive metal load, which is essential to compensate for the loss of Li sources resulting from their poor coulombic efficiencies (CEs). Therefore, the development of high‐performance LMA is needed to realize anode‐minimized Li metal batteries (LMBs). In this study, high‐performance LMAs are produced by introducing a hierarchically nanoporous assembly (HNA) composed of functionalized onion‐like graphitic carbon building blocks, several nanometers in diameter, as a catalytic scaffold for Li‐metal storage. The HNA‐based electrodes lead to a high Li ion concentration in the nanoporous structure, showing a high CE of ≈ 99.1%, high rate capability of 12 mA cm?2, and a stable cycling behavior of more than 750 cycles. In addition, anode‐minimized LMBs are achieved using a HNA that has limited Li content ( ≈ 0.13 mg cm?2), corresponding to 6.5% of the cathode material (commercial NCM622 ( ≈ 2 mg cm?2)). The LMBs demonstrate a feasible electrochemical performance with high energy and power densities of ≈ 510 Wh kgelectrode?1 and ≈ 2760 W kgelectrode?1, respectively, for more than 100 cycles.  相似文献   

20.
Bendable energy‐storage systems with high energy density are demanded for conformal electronics. Lithium‐metal batteries including lithium–sulfur and lithium–oxygen cells have much higher theoretical energy density than lithium‐ion batteries. Reckoned as the ideal anode, however, Li has many challenges when directly used, especially its tendency to form dendrite. Under bending conditions, the Li‐dendrite growth can be further aggravated due to bending‐induced local plastic deformation and Li‐filaments pulverization. Here, the Li‐metal anodes are made bending tolerant by integrating Li into bendable scaffolds such as reduced graphene oxide (r‐GO) films. In the composites, the bending stress is largely dissipated by the scaffolds. The scaffolds have increased available surface for homogeneous Li plating and minimize volume fluctuation of Li electrodes during cycling. Significantly improved cycling performance under bending conditions is achieved. With the bending‐tolerant r‐GO/Li‐metal anode, bendable lithium–sulfur and lithium–oxygen batteries with long cycling stability are realized. A bendable integrated solar cell–battery system charged by light with stable output and a series connected bendable battery pack with higher voltage is also demonstrated. It is anticipated that this bending‐tolerant anode can be combined with further electrolytes and cathodes to develop new bendable energy systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号