首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
As competing with the established silicon technology, organic–inorganic metal halide perovskites are continually gaining ground in optoelectronics due to their excellent material properties and low‐cost production. The ability to have control over their shape, as well as composition and crystallinity, is indispensable for practical materialization. Many sophisticated nanofabrication methods have been devised to shape perovskites; however, they are still limited to in‐plane, low‐aspect‐ratio, and simple forms. This is in stark contrast with the demands of modern optoelectronics with freeform circuitry and high integration density. Here, a nanoprecision 3D printing is developed for organic–inorganic metal halide perovskites. The method is based on guiding evaporation‐induced perovskite crystallization in mid‐air using a femtoliter ink meniscus formed on a nanopipette, resulting in freestanding 3D perovskite nanostructures with a preferred crystal orientation. Stretching the ink meniscus with a pulling process enables on‐demand control of the nanostructure's diameter and hollowness, leading to an unprecedented tubular‐solid transition. With varying the pulling direction, a layer‐by‐layer stacking of perovskite nanostructures is successfully demonstrated with programmed shapes and positions, a primary step for additive manufacturing. It is expected that the method has the potential to create freeform perovskite nanostructures for customized optoelectronics.  相似文献   

2.
The hybrid organic–inorganic perovskites (HOIPs) form a new class of semiconductors which show promising optoelectronic device applications. Remarkably, the optoelectronic properties of HOIP are tunable by changing the chemical components of their building blocks. Recently, the HOIP spintronic properties and their applications in spintronic devices have attracted substantial interest. Here the impact of the chemical component diversity in HOIPs on their spintronic properties is studied. Spin valve devices based on HOIPs with different organic cations and halogen atoms are fabricated. The spin diffusion length is obtained in the various HOIPs by measuring the giant magnetoresistance (GMR) response in spin valve devices with different perovskite interlayer thicknesses. In addition spin lifetime is also measured from the Hanle response. It is found that the spintronic properties of HOIPs are mainly determined by the halogen atoms, rather than the organic cations. The study provides a clear avenue for engineering spintronic devices based on HOIPs.  相似文献   

3.
Conventional 3D organic–inorganic halide perovskites have recently undergone unprecedented rapid development. Yet, their inherent instabilities over moisture, light, and heat remain a crucial challenge prior to the realization of commercialization. By contrast, the emerging 2D Ruddlesden?Popper‐type perovskites have recently attracted increasing attention owing to their great environmental stability. However, the research of 2D perovskites is just in their infancy. In comparison to 3D analogues, they are natural quantum wells with a much larger exciton binding energy. Moreover, their inner structural, dielectric, optical, and excitonic properties remain to be largely explored, limiting further applications. This review begins with an introduction to 2D perovskites, along with a detailed comparison to 3D counterparts. Then, a discussion of the organic spacer cation engineering of 2D perovskites is presented. Next, quasi‐2D perovskites that fall between 3D and 2D perovskites are reviewed and compared. The unique excitonic properties, electron–phonon coupling, and polarons of 2D perovskites are then be revealed. A range of their (opto)electronic applications is highlighted in each section. Finally, a summary is given, and the strategies toward structural design, growth control, and photophysics studies of 2D perovskites for high‐performance electronic devices are rationalized.  相似文献   

4.
Chiral inorganic quasi-2D perovskites are prepared by self-assembling 3D perovskites in solution for the first time. The quasi-2D perovskite synthesized is a pure-phase perovskite with <n> = 3 and is periodically arranged, which is a big breakthrough in quasi-2D inorganic perovskites.  With the individual chiral CsPbBr3 nanocrystals (NCs) assemble into quasi-2D perovskite, the g-factor significantly improved (≈5 × 10−3). In addition, the chiroptical activity of quasi-2D perovskites is explored to be improved with the lateral size increasing. In the first stage of assembly, chiral optical activity is increased due to the lateral size-dependent optical activity, while the changes in the later stages are attributable to the chiral morphology. Interestingly, chirality inversion is found to be correlated to the number of ligands. It is believed that different conformers of chiral ligands caused by steric hindrance of the original ligand oleylamine result in opposite circular dichroism (CD) polarities. The chirality inversion phenomenon is universal, regardless of the choice of ligands. This work opens up a new path for the synthesis of quasi-2D perovskites and provides more opportunities for the modulation of chiral optical activity.  相似文献   

5.
The ease of processing hybrid organic–inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX3, from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time‐ and rate‐dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop‐in events and slip bands on the surface of the indented crystals demonstrate dislocation‐mediated plastic deformation. The magnitudes of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A‐site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. This contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations.  相似文献   

6.
Following the rejuvenation of 3D organic–inorganic hybrid perovskites, like CH3NH3PbI3, (quasi)‐2D Ruddlesden–Popper soft halide perovskites R2An?1PbnX3n+1 have recently become another focus in the optoelectronic and photovoltaic device community. Although quasi‐2D perovskites were first introduced to stabilize optoelectronic/photovoltaic devices against moisture, more interesting properties and device applications, such as solar cells, light‐emitting diodes, white‐light emitters, lasers, and polaritonic emission, have followed. While delicate engineering design has pushed the performance of various devices forward remarkably, understanding of the fundamental properties, especially the charge‐transfer process, electron–phonon interactions, and the growth mechanism in (quasi)‐2D halide perovskites, remains limited and even controversial. Here, after reviewing the current understanding and the nexus between optoelectronic/photovoltaic properties of 2D and 3D halide perovskites, the growth mechanisms, charge‐transfer processes, vibrational properties, and electron–phonon interactions of soft halide perovskites, mainly in quasi‐2D systems, are discussed. It is suggested that single‐crystal‐based studies are needed to deepen the understanding of the aforementioned fundamental properties, and will eventually contribute to device performance.  相似文献   

7.
Hybrid organic–inorganic perovskites (HOIPs) have shown great promise in a wide range of optoelectronic applications. However, this performance is inhibited by the sensitivity of HOIPs to various environmental factors, particularly high levels of relative humidity. This study uses X-ray photoelectron spectroscopy (XPS) to determine that there is essentially no threshold to water adsorption on the in situ cleaved MAPbBr3(001) single crystal surface. Using scanning tunneling microscopy (STM), it shows that the initial surface restructuring upon exposure to water vapor occurs in isolated regions, which grow in area with increasing exposure, providing insight into the initial degradation mechanism of HOIPs. The electronic structure evolution of the surface was also monitored via ultraviolet photoemission spectroscopy (UPS), evidencing an increased bandgap state density following water vapor exposure, which is attributed to surface defect formation due to lattice swelling. This study will help to inform the surface engineering and designs of future perovskite-based optoelectronic devices.  相似文献   

8.
Metal halide perovskites have affirmed their pedigree as extraordinary semiconducting materials, exhibiting properties rivalling those observed in single crystal compound semiconductors. Perovskites show tremendous versatilities in both structure and composition tuning, and therefore applications ranging from optoelectronics to X-ray imaging and spintronics, neuromorphic electronics are emerging. Moreover, when their dimensions become comparable to the exciton Bohr radius, perovskite nanostructures and layered systems display remarkable properties because of quantum confinement. Nanostructured and lower dimensional layered perovskites exhibit properties that are yet to be fully exploited such as extraordinarily high luminescence, narrow emissions, high exciton binding energies, strong non-linear phenomena, and carrier cascade characteristics. This review, while highlighting the frontier phenomena that continue to be unravelled, outlines how confined structures of these materials have demonstrated properties that promise to unlock exceptional quantum phenomena to challenge the optoelectronic limits.  相似文献   

9.
3D organic–inorganic hybrid perovskites have featured high gain coefficients through the electron–hole plasma stimulated emission mechanism, while their 2D counterparts of Ruddlesden–Popper perovskites (RPPs) exhibit strongly bound electron–hole pairs (excitons) at room temperature. High‐performance solar cells and light‐emitting diodes (LEDs) are reported based on 2D RPPs, whereas light‐amplification devices remain largely unexplored. Here, it is demonstrated that ultrafast energy transfer along cascade quantum well (QW) structures in 2D RPPs concentrates photogenerated carriers on the lowest‐bandgap QW state, at which population inversion can be readily established enabling room‐temperature amplified spontaneous emission and lasing. Gain coefficients measured for 2D RPP thin‐films (≈100 nm in thickness) are found about at least four times larger than those for their 3D counterparts. High‐density large‐area microring arrays of 2D RPPs are fabricated as whispering‐gallery‐mode lasers, which exhibit high quality factor (Q ≈ 2600), identical optical modes, and similarly low lasing thresholds, allowing them to be ignited simultaneously as a laser array. The findings reveal that 2D RPPs are excellent solution‐processed gain materials potentially for achieving electrically driven lasers and ideally for on‐chip integration of nanophotonics.  相似文献   

10.
2D perovskites have emerged as one of the most promising photovoltaic materials owing to their excellent stability compared with their 3D counterparts. However, in typical 2D perovskites, the highly conductive inorganic layers are isolated by large organic cations leading to quantum confinement and thus inferior electrical conductivity across layers. To address this issue, the large organic cations are replaced with small propane‐1,3‐diammonium (PDA) cations to reduce distance between the inorganic perovskite layers. As shown by optical characterizations, quantum confinement is no longer dominating in the PDA‐based 2D perovskites. This leads to considerable enhancement of charge transport as confirmed with electrochemical impedance spectroscopy, time‐resolved photoluminescence, and mobility measurements. The improved electric properties of the interlayer‐engineered 2D perovskites yield a power conversion efficiency of 13.0%. Furthermore, environmental stabilities of the PDA‐based 2D perovskites are improved. PDA‐based 2D perovskite solar cells (PSCs) with encapsulation can retain over 90% of their efficiency upon storage for over 1000 h, and PSCs without encapsulation can maintain their initial efficiency at 70 °C for over 100 h, which exhibit promising stabilities. These results reveal excellent optoelectronic properties and intrinsic stabilities of the layered perovskites with reduced interlayer distance.  相似文献   

11.
Thanks to their unique optical and electric properties, 2D materials have attracted a lot of interest for optoelectronic applications. Here, the emerging 2D materials, organic–inorganic hybrid perovskites with van der Waals interlayer interaction (Ruddlesden–Popper perovskites), are synthesized and characterized. Photodetectors based on the few‐layer Ruddlesden–Popper perovskite show good photoresponsivity as well as good detectivity. In order to further improve the photoresponse performance, 2D MoS2 is chosen to construct the perovskite–MoS2 heterojunction. The performance of the hybrid photodetector is largely improved with 6 and 2 orders of magnitude enhancement for photoresponsivity (104 A W?1) and detectivity (4 × 1010 Jones), respectively, which demonstrates the facile charge separation at the interface between perovskite and MoS2. Furthermore, the contribution of back gate tuning is proved with a greatly reduced dark current. The results demonstrated here will open up a new field for the investigation of 2D perovskites for optoelectronic applications.  相似文献   

12.
Ruddlesden–Popper perovskites (RPPs), consisting of alternating organic spacer layers and inorganic layers, have emerged as a promising alternative to 3D perovskites for both photovoltaic and light‐emitting applications. The organic spacer layers provide a wide range of new possibilities to tune the properties and even provide new functionalities for RPPs. However, the preparation of state‐of‐the‐art RPPs requires organic ammonium halides as the starting materials, which need to be ex situ synthesized. A novel approach to prepare high‐quality RPP films through in situ formation of organic spacer cations from amines is presented. Compared with control devices fabricated from organic ammonium halides, this new approach results in similar (and even better) device performance for both solar cells and light‐emitting diodes. High‐quality RPP films are fabricated based on different types of amines, demonstrating the universality of the approach. This approach not only represents a new pathway to fabricate efficient devices based on RPPs, but also provides an effective method to screen new organic spacers with further improved performance.  相似文献   

13.
14.
The last eight years (2009–2017) have seen an explosive growth of interest in organic–inorganic halide perovskites in the research communities of photovoltaics and light‐emitting diodes. In addition, recent advancements have demonstrated that this type of perovskite has a great potential in the technology of light‐signal detection with a comparable performance to commercially available crystalline Si and III–V photodetectors. The contemporary growth of state‐of‐the‐art multifunctional perovskites in the field of light‐signal detection has benefited from its outstanding intrinsic optoelectronic properties, including photoinduced polarization, high drift mobilities, and effective charge collection, which are excellent for this application. Photoactive perovskite semiconductors combine effective light absorption, allowing detection of a wide range of electromagnetic waves from ultraviolet and visible, to the near‐infrared region, with low‐cost solution processability and good photon yield. This class of semiconductor might empower breakthrough photodetector technology in the field of imaging, optical communications, and biomedical sensing. Therefore, here, the focus is specifically on the critical understanding of materials synthesis, design, and engineering for the next‐stage development of perovskite photodetectors and highlighting the current challenges in the field, which need to be further studied in the future.  相似文献   

15.
In the growing list of 2D semiconductors as potential successors to silicon in future devices, metal‐halide perovskites have recently joined the family. Unlike other conversional 2D covalent semiconductors such as graphene, transition metal dichalcogenides, black phosphorus, etc., 2D perovskites are ionic materials, affording many distinct properties of their own, including high photoluminescence quantum efficiency, balanced large exciton binding energy and oscillator strength, and long carrier diffusion length. These unique properties make 2D perovskites potential candidates for optoelectronic and photonic devices such as solar cells, light‐emitting diodes, photodetectors, nanolasers, waveguides, modulators, and so on, which represent a relatively new but exciting and rapidly expanding area of research. In this Review, the recent advances in emerging 2D metal‐halide perovskites and their applications in the fields of optoelectronics and photonics are summarized and insights into the future direction of these fields are offered.  相似文献   

16.
The tremendous interest focused on organic–inorganic halide perovskites since 2012 derives from their unique optical and electrical properties, which make them excellent photovoltaic materials. Pb‐based halide perovskite solar cells, in particular, currently stand at a record efficiency of ≈23%, fulfilling their potential toward commercialization. However, because of the toxicity concerns of Pb‐based perovskite solar cells, their market prospects are hindered. In principle, Pb can be replaced with other less‐toxic, environmentally benign metals. Sn‐based perovskites are thus the far most promising alternative due to their very similar and perhaps even superior semiconductor characteristics. After years of effort invested in Sn‐based halide perovskites, sufficient breakthroughs have finally been achieved that make them the next runners up to the Pb halide perovskites. To help the reader better understand the nature of Sn‐based halide perovskites, their optical and electrical properties are systematically discussed. Recent progress in Sn‐based perovskite solar cells, focusing mainly on film fabrication methods and different device architectures, and highlighting roadblocks to progress and opportunities for future work are reviewed. Finally, a brief overview of mixed Sn/Pb‐based systems with their anomalous yet beneficial optical trends are discussed. The current challenges and a future outlook for Sn‐based perovskites are discussed.  相似文献   

17.
All‐inorganic perovskites are considered to be one of the most appealing research hotspots in the field of perovskite photovoltaics in the past 3 years due to their superior thermal stability compared to their organic–inorganic hybrid counterparts. The power‐conversion efficiency has reached 17.06% and the number of important publications is ever increasing. Here, the progress of inorganic perovskites is systematically highlighted, covering materials design, preparation of high‐quality perovskite films, and avoidance of phase instabilities. Inorganic perovskites, nanocrystals, quantum dots, and lead‐free compounds are discussed and the corresponding device performances are reviewed, which have been realized on both rigid and flexible substrates. Methods for stabilization of the cubic phase of low‐bandgap inorganic perovskites are emphasized, which is a prerequisite for highly efficient and stable solar cells. In addition, energy loss mechanisms both in the bulk of the perovskite and at the interfaces of perovskite and charge selective layers are unraveled. Reported approaches to reduce these charge‐carrier recombination losses are summarized and complemented by methods proposed from our side. Finally, the potential of inorganic perovskites as stable absorbers is assessed, which opens up new perspectives toward the commercialization of inorganic perovskite solar cells.  相似文献   

18.
2D organic–inorganic hybrid perovskites (OIHPs) may resolve the stability problem of bulk OIHPs. First‐principles calculations are employed to investigate the mechanism behind their favorable material properties. Two processes are identified to play a critical role: First, the 2D structure supports additional distortions that enhance the intrinsic structural stability. Second, the surface terminations of 2D OIHPs suppress degradation effects due to humidity. Having uncovered the stabilization mechanism, 2D OIHPs are designed with optimal stability and favorable electronic properties.  相似文献   

19.
Xie Z  Xie Z  Markus TZ  Cohen SR  Vager Z  Gutierrez R  Naaman R 《Nano letters》2011,11(11):4652-4655
Spin-based properties, applications, and devices are commonly related to magnetic effects and to magnetic materials. Most of the development in spintronics is currently based on inorganic materials. Despite the fact that the magnetoresistance effect has been observed in organic materials, until now spin selectivity of organic based spintronics devices originated from an inorganic ferromagnetic electrode and was not determined by the organic molecules themselves. Here we show that conduction through double-stranded DNA oligomers is spin selective, demonstrating a true organic spin filter. The selectivity exceeds that of any known system at room temperature. The spin dependent resistivity indicates that the effect cannot result solely from the atomic spin-orbit coupling and must relate to a special property resulting from the chirality symmetry. The results may reflect on the importance of spin in determining electron transfer rates through biological systems.  相似文献   

20.
Porous semiconductors attract great interest due to their unique structural characteristics of high surface area as well as their intrinsic optical and electronic properties. In this study, synthesis of inorganic–organic 2D CdSe slabs‐diaminooctane (DAO) porous quantum net structures is demonstrated. It is found that the hybrid 2D CdSe‐DAO lamellar structures are disintegrated into porous net structures, maintaining an ultrathin thickness of ≈1 nm in CdSe slabs. Furthermore, the CdSe slabs in quantum nets show the highly shifted excitonic transition in the absorption spectrum, demonstrating their strongly confined electronic structures. The possible formation mechanism of this porous structure is investigated with the control experiments of the synthesis using n‐alkyldiamines with various hydrocarbon chain lengths and ligand exchange of DAO with oleylamine. It is suggested that a strong van der Waals interaction among long chain DAO may exert strong tensile stress on the CdSe slabs, eventually disintegrating slabs. The thermal decomposition of CdSe‐DAO quantum nets is further studied to form well‐defined CdSe nanorods. It is believed that the current CdSe‐DAO quantum nets will offer a new type of porous semiconductors nanostructures under a strong quantum‐confinement regime, which can be applied to various technological areas of catalysts, electronics, and optoelectronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号