首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solar‐driven evaporation is a promising way of using abundant solar energy for desalinating polluted water or seawater, which addresses the challenge of global fresh water scarcity. Cost‐effectiveness and durability are key factors for practical solar‐driven evaporation technology. The present cutting‐edge techniques mostly rely on costly and complex fabricated nanomaterials, such as metallic nanoparticles, nanotubes, nanoporous hydrogels, graphene, and graphene derivatives. Herein, a black nylon fiber (BNF) flocking board with a vertically aligned array prepared via a convenient electrostatic flocking technique is reported, presenting an extremely high solar absorbance (99.6%), a water self‐supply capability, and a unique salt self‐dissolution capability for seawater desalination. Through a carefully designed 3D structure, a plug‐in‐type BNF flocking board steam generator realizes a high evaporation rate of 2.09 kg m?2 h?1 under 1 kW m?2 solar illumination, well beyond its corresponding upper limit of 1.50 kg m?2 h?1 (assuming 100% solar energy is being used for evaporation latent heat). With the advantages of high‐efficiency fabrication, cost‐effectiveness, high evaporation rate, and high endurance in seawater desalination, this 3D design provides a new strategy to build up an economic, sustainable, and rapid solar‐driven steam generation system.  相似文献   

2.
Aqueous ion–solid interfacial interactions at an electric double layer (EDL) are studied in various research fields. However, details of the interactions at the EDL are still not fully understood due to complexity induced from the specific conditions of the solid and liquid parts. Several technical tools for ion–solid interfacial probing are experimentally and practically proposed, but they still show limitations in applicability due to the complicated measurements. Recently, an energy conversion device based on ion dynamics (called ionovoltaic device) was also introduced as another monitoring tool for the EDL, showing applicability as a novel probing method for interfacial interactions. Herein, a monitoring technique for specific ion adsorption (Cu2+ and Pb2+ in the range of 5 × 10?6–1000 × 10?6m ) in the solid–liquid interface based on the ionovoltaic device is newly demonstrated. The specific ion adsorption and the corresponding interfacial potentials profiles are also investigated to elucidate a working mechanism of the device. The results give the insight of molecular‐level ion adsorption through macroscopic water‐motion‐induced electricity generation. The simple and cost‐effective detection of the device provides an innovative route for monitoring specific adsorption and expandability as a monitoring tool for various solid–liquid interfacial phenomena that are unrevealed.  相似文献   

3.
The lethal danger of particulate matter (PM) pollution on health leads to the development of challenging individual protection materials that should ideally exhibit a high PM2.5 purification efficiency, low air resistance, an important moisture‐vapor transmission rate (MVTR), and an easy‐to‐clean property. Herein, a cleanable air filter able to rapidly transfer moisture and efficiently capture PM2.5 is designed by electrospinning superhydrophilic polyacrylonitrile/silicon‐dioxide fibers as the adsorption–desorption vector for moisture‐vapor, and hydrophobic polyvinylidene fluoride fibers as the repellent components to avoid the formation of capillary water under high humidity. The desorption rate of water molecules increases from 10 to 18 mg min?1, while the diameters of polyacrylonitrile fibers reduce from 1.02 to 0.14 µm. Significantly, by introducing the hydroxyl on the surface of polyacrylonitrile nanofibers, rapid adsorption–desorption of the water molecules is observed. Moreover, by constructing a hydrophobic to super‐hydrophilic gradient structure, the MVTR increases from 10 346 to 14 066 g m?2 d?1. Interestingly, the prepared fibrous membranes is easy to clean. More importantly, benefiting from enhanced slip effect, the resultant fibrous membranes presented a low air resistance of 86 Pa. A field test in Shanghai shows that the air filter maintains stable PM2.5 purification efficiency of 99.99% at high MVTR during haze event.  相似文献   

4.
Solar‐thermal water evaporation, as a promising method for clean water production, has attracted increasing attention. However, solar water evaporators that exhibit both high water vapor generation ability and anti‐oil‐fouling ability have not been reported. Here, a unique metal–organic‐framework‐based hierarchical structure, referred to as MOF‐based hierarchical structure (MHS), is rationally designed and prepared, which simultaneously displays a high solar absorption and a superhydrophilic and underwater superoleophobic surface property. As a proof‐of‐concept application, a device prepared from the MHS can achieve a high solar‐thermal water evaporation rate of 1.50 kg m?2 h?1 under 1 sun illumination. Importantly, the MHS also possesses an excellent anti‐oil‐fouling property, ensuring its superior water evaporation performance even in oil‐contaminated water. The high solar‐thermal water evaporation rate and anti‐oil‐fouling property make the MHS a promising material for the solar‐thermal water production.  相似文献   

5.
Converting solar energy into chemical fuels is increasingly receiving a great deal of attention. In this work, CdS nanoparticles (NPs) are solvothermally anchored onto graphene nanoribbons (GNRs) that are longitudinally unzipped from multiwalled carbon nanotubes. The as‐synthesized CdS/GNR nanocomposites with recyclability present GNR content‐dependent activity in visible‐light‐driven hydrogen evolution from water splitting. In a range of 1–10 wt% GNRs, the CdS/GNR composites with 2 wt% GNRs achieves the greatest hydrogen evolution rate of 1.89 mmol h?1 g?1. The corresponding apparent quantum efficiency is 19.3%, which is ≈3.7 times higher than that of pristine CdS NPs. To elucidate the underlying photocatalytic mechanism, a systematic characterization, including in situ irradiated X‐ray photoelectron spectroscopy and Kelvin probe measurements, is performed. In particular, the interfacial charge transfer pathway and process from CdS NPs to GNRs is revealed. This work may open avenues to fabricate GNR‐based nanocomposites for solar‐to‐chemical energy conversion and beyond.  相似文献   

6.
The use of abundant solar energy for regeneration and desalination of water is a promising strategy to address the challenge of a global shortage of clean water. Progress has been made to develop photothermal materials to improve the solar steam generation performance. However, the mass production rate of water is still low. Herein, by a rational combination of photo‐electro‐thermal effect on an all‐graphene hybrid architecture, solar energy can not only be absorbed fully and transferred into heat, but also converted into electric power to further heat up the graphene skeleton frame for a much enhanced generation of water vapor. As a result, the unique graphene evaporator reaches a record high water production rate of 2.01–2.61 kg m?2 h?1 under solar illumination of 1 kW m?2 even without system optimization. Several square meters of the graphene evaporators will provide a daily water supply that is enough for tens of people. The combination of photo‐electro‐thermal effect on graphene materials offers a new strategy to build a fast and scalable solar steam generation system, which makes an important step towards a solution for the scarcity of clean water.  相似文献   

7.
Design and development of efficient photocatalysts for H2 production from water and sunlight have gained significant attention as the solar assisted approach is considered to be a promising approach for the generation of clean fuel. However, the poor charge carrier separation and light harvesting ability of existing photocatalysts limits the efficiency of photoconversion of water. In this work, the synthesis of transition metal ions (M2+ = Co2+, Cu2+, and Ni2+) coordinated with Ti‐metal organic frameworks (Ti‐MOFs) through a simple post‐synthetic coordination method for efficient solar light‐driven H2 production is reported. Notably, coordination of M2+ ions with Ti‐MOF significantly improves the optical absorption by d–d transitions and the multimetal sites facilitate the fast charge carrier separation, thereby enhancing the solar light‐driven H2 production activity. Very interestingly, the rate of solar light‐driven H2 production is varied with respect to different metal ions coordination due to the position of d–d bands absorption in the solar spectrum, and the complexing tendency of M2+ ions with sacrificial electron donors. A maximum solar H2 production rate of 1583.55 µmol h?1 g?1 is achieved with a Cu2+ coordinated Ti‐MOF, which is ≈13 fold higher than that of the pristine Ti‐MOF.  相似文献   

8.
Solar steaming has emerged as a promising green technology that can address the global issue of scarcity of clean water. However, developing high‐performance, cost‐effective, and manufacturable solar‐steaming materials, and portable solar steaming‐collection systems for individuals remains a great challenge. Here, a one‐step, low‐cost, and mass‐producible synthesis of polypyrrole (PPy) origami‐based photothermal materials, and an original portable low‐pressure controlled solar steaming‐collection unisystem, offering synergetic high rates in both water evaporation and steam collection, are reported. Due to enhanced areas for vapor dissipation, the PPy origami improves the water evaporation rate by at least 71% to 2.12 kg m?2 h?1 from that of a planar structure and exhibits a solar–thermal energy conversion efficiency of 91.5% under 1 Sun. When further controlling the pressure to ≈0.17 atm in the steaming‐collection unisystem, the water collection rate improves by up to 52% systematically and dramatically. Although partial energy is utilized toward obtaining low‐pressure, evaluations show that the overall energy efficiency is improved remarkably in the low‐pressure system compared to that in ambient pressure. Furthermore, the device demonstrates effective decontamination of heavy metals, bacteria, and desalination. This work can inspire new paradigms toward developing high‐performance solar steaming technologies for individuals and households.  相似文献   

9.
Traditionally, Schottky diodes are used statically in the electronic information industry while dynamic or moving Schottky diode–based applications are rarely explored. Herein, a novel Schottky diode named “moving Schottky diode generator” is designed, which can convert mechanical energy into electrical energy by means of lateral movement between the graphene/metal film and semiconductor. The mechanism is based on the built‐in electric field separation of the diffusing carriers in moving Schottky diode. A current‐density output up of 40.0 A m?2 is achieved through minimizing the contact distance between metal and semiconductor, which is 100–1000 times higher than former piezoelectric and triboelectric nanogenerators. The power density and power conversion efficiency of the heterostructure‐based generator can reach 5.25 W m?2 and 20.8%, which can be further enhanced by Schottky junction interface design. Moreover, the graphene film/semiconductor moving Schottky diode–based generator behaves better flexibility and stability, which does not show obvious degradation after 10 000 times of running, indicating its great potential in the usage of portable energy source. This moving Schottky diode direct‐current generator can light up a blue light‐emitting diode and a flexible graphene wristband is demonstrated for wearable energy source.  相似文献   

10.
Solar‐driven vaporization is a sustainable solution to water and energy scarcity. However, most of the present evaporators are still suffering from inefficient utilization of converted thermal energy. Herein, a universal sandwich membrane strategy is demonstrated by confining the hierarchical porous carbon cells in two energy barriers to obtain a high‐efficiency evaporator with a rapid water evaporation rate of 1.87 kg m?2 h?1 under 1 sun illumination, which is among the highest performance for carbon‐based and wood‐based evaporators. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized porous evaporation mode derived from the hierarchical hollow structures of pollen carbon cells, and the synergistically regulated water transporting and thermal management performance of the sandwich membrane. Moreover, the constructed sandwich membrane also exhibits excellent self‐regenerating performance in simulated seawater and high salinity water. The developed device can maintain an average evaporation rate of 4.3 L m?2 day?1 in a 25 day consecutive outdoor test.  相似文献   

11.
Portable water splitting devices driven by rechargeable metal–air batteries or solar cells are promising, however, their scalable usages are still hindered by lack of suitable multifunctional electrocatalysts. Here, a highly efficient multifunctional electrocatalyst is demonstrated, i.e., 2D nanosheet array of Mo‐doped NiCo2O4/Co5.47N heterostructure deposited on nickel foam (Mo‐NiCo2O4/Co5.47N/NF). The successful doping of non‐3d high‐valence metal into a heterostructured nanosheet array, which is directly grown on a conductive substrate endows the resultant catalyst with balanced electronic structure, highly exposed active sites, and binder‐free electrode architecture. As a result, the Mo‐NiCo2O4/Co5.47N/NF exhibits remarkable catalytic activity toward the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), affording high current densities of 50 mA cm?2 at low overpotentials of 310 mV for OER, and 170 mV for HER, respectively. Moreover, a low voltage of 1.56 V is achieved for the Mo‐NiCo2O4/Co5.47N/NF‐based water splitting cell to reach 10 mA cm?2. More importantly, a portable overall water splitting device is demonstrated through the integration of a water‐splitting cell and two Zn–air batteries (open‐circuit voltage of 1.43 V), which are all fabricated based on Mo‐NiCo2O4/Co5.47N/NF, demonstrating a low‐cost way to generate fuel energy. This work offers an effective strategy to develop high‐performance metal‐doped heterostructured electrode.  相似文献   

12.
The challenge in the artificial photosynthesis of fossil resources from CO2 by utilizing solar energy is to achieve stable photocatalysts with effective CO2 adsorption capacity and high charge‐separation efficiency. A hierarchical direct Z‐scheme system consisting of urchin‐like hematite and carbon nitride provides an enhanced photocatalytic activity of reduction of CO2 to CO, yielding a CO evolution rate of 27.2 µmol g?1 h?1 without cocatalyst and sacrifice reagent, which is >2.2 times higher than that produced by g‐C3N4 alone (10.3 µmol g?1 h?1). The enhanced photocatalytic activity of the Z‐scheme hybrid material can be ascribed to its unique characteristics to accelerate the reduction process, including: (i) 3D hierarchical structure of urchin‐like hematite and preferable basic sites which promotes the CO2 adsorption, and (ii) the unique Z‐scheme feature efficiently promotes the separation of the electron–hole pairs and enhances the reducibility of electrons in the conduction band of the g‐C3N4. The origin of such an obvious advantage of the hierarchical Z‐scheme is not only explained based on the experimental data but also investigated by modeling CO2 adsorption and CO adsorption on the three different atomic‐scale surfaces via density functional theory calculation. The study creates new opportunities for hierarchical hematite and other metal‐oxide‐based Z‐scheme system for solar fuel generation.  相似文献   

13.
Water scarcity is a ubiquitous problem with its magnitude expected to rise in the near future, and efforts to seek alternative water sources are on the rise. Harvesting water from air has intrigued enormous research interest among many groups with Scientific American listing this technology as the second most impactful technology that can bring about a massive change in people's lives. Though desalination offers a huge prospect in mitigating water crisis, its practicality is limited by exorbitant energy requirement. Alternatively, the air above sea water is moisture rich, with the quantity of vapor increasing at the rate of 0.41 kg m?2. Herein, a method to sustainably harvest water from this moisture rich zone is demonstrated by employing a nanoporous superhygroscopic hydrogel, which is capable of absorbing water from highly humid atmospheres by over 420% (highest) of its own weight. The desorption process from the hydrogel, occurring at 55 °C (lowest), is triggered by natural sunlight (A.M 1.5) thereby ensuing an external energy‐less water harvesting approach. The hydrogel exhibits excellent stability even after 1000 absorption/desorption cycles. Through multiple absorption/desorption cycles, it is possible to harvest over 10 L water per kg of hydrogel daily.  相似文献   

14.
Diagnostics of nanoagglomerates of hydroxyapatite Ca10(PO4)6(OH)2 and of hierarchic structures based on them by the method of adsorption of tritium-labeled sodium succinate is made. The adsorption kinetics is one-step in the case of hydroxyapatite nanocrystals and two-step in the case of textured hydroxyapatite. The parameters of the S-shaped sorption isotherms are calculated; they are described by the Guggenheim-Fowler-Frumkin equation. The specific surface area of hydroxyapatite nanoagglomerates is 650–700 m2 g?1, which is close to the theoretical density of individual nanocrystals (900 m2 g?1), and the specific surface area of textured hydroxyapatite (macrospheroids) is 250–300 m2 g?1. Adsorption of succinate ions on the surface of hydroxyapatite nanocrystals leads to the formation of a tightly bound monolayer, which may lead to structural rearrangement of the sorbent.  相似文献   

15.
The realization of large‐scale solar hydrogen (H2) production relies on the development of high‐performance and low‐cost photocatalysts driven by sunlight. Recently, cocatalysts have demonstrated immense potential in enhancing the activity and stability of photocatalysts. Hence, the rational design of highly active and inexpensive cocatalysts is of great significance. Here, a facile method is reported to synthesize Ni@C core–shell nanoparticles as a highly active cocatalyst. After merging Ni@C cocatalyst with CdS nanorod (NR), a tremendously enhanced visible‐light photocatalytic H2‐production performance of 76.1 mmol g?1 h?1 is achieved, accompanied with an outstanding quantum efficiency of 31.2% at 420 nm. The state‐of‐art characterizations (e.g., synchrotron‐based X‐ray absorption near edge structure) and theoretical calculations strongly support the presence of pronounced nanoconfinement effect in Ni@C core–shell nanoparticles, which leads to controlled Ni core size, intimate interfacial contact and rapid charge transfer, optimized electronic structure, and protection against chemical corrosion. Hence, the combination of nanoconfined Ni@C with CdS nanorod leads to significantly improved photocatalytic activity and stability. This work not only for the first time demonstrates the great potential of using highly active and inexpensive Ni@C core–shell structure to replace expensive Pt in photocatalysis but also opens new avenues for synthesizing cocatalyst/photocatalyst hybridized systems with excellent performance by introducing nanoconfinement effect.  相似文献   

16.
Mesoporous nanofibers (NFs) with a high surface area of 112 m2/g have been prepared by electrospinning technique. The structures of mesoporous NFs and regular NFs are characterized and compared through scanning electron microscope (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and selected area electron diffraction (SAED) studies. Using mesoporous TiO2 NFs as the photoelectrode, solid‐state dye‐sensitized solar cells (SDSCs) have been fabricated employing D131 as the sensitizer and P3HT as the hole transporting material to yield an energy conversion efficiency (η) of 1.82%. A Jsc of 3.979 mA cm?2 is obtained for mesoporous NF‐based devices, which is 3‐fold higher than that (0.973 mA cm?2) for regular NF‐based devices fabricated under the same condition (η = 0.42%). Incident photon‐to‐current conversion efficiency (IPCE) and dye‐desorption test demonstrate that the increase in Jsc is mainly due to greatly improved dye adsorption for mesoporous NFs as compared to that for regular NFs. In addition, intensity modulated photocurrent spectroscopy (IMPS) and intensity modulated photovoltage spectroscopy (IMVS) measurements indicate that the mesopores on NF surface have very minor effects on charge transport and collection. Initial aging test proves good stability of the fabricated devices, which indicates the promise of mesoporous NFs as photoelectrode for low‐cost SDSCs.  相似文献   

17.
Although the costs of desalination have declined, traditional desalination systems still need large amounts of energy. Recent advances in direct contact membrane distillation can take advantage of low-quality renewable heat to desalinate brackish water, seawater, or wastewater. In this work, the performance of a direct contact membrane distillation (DCMD) system driven by salt-gradient solar ponds was investigated. A mathematical model that couples both systems was constructed and validated with experimental data available in the scientific literature. Using the validated model, the performance of this coupled system in different geographical locations and under different operational conditions was studied. Our results show that even when this coupled system can be used to meet the future needs of energy and water use in a sustainable way, it is suitable for locations between 40°N and 40°S that are near the ocean as these zones have enough solar radiation, and availability of excess water and salts to operate the coupled system. The maximum freshwater flow rates that can be obtained are on the order of 3.0 L d?1 per m2 of solar pond (12.1 m3 d?1 acre?1), but the expected freshwater production values are more likely to be on the order of 2.5 L d?1 per m2 of solar pond (10.1 m3 d?1 acre?1) when the system operates with imperfections. The coupled system has a thermal energy consumption of 880 ± 60 kWh per m3 of distillate, which is in the range of other membrane distillation systems. Different operational conditions were evaluated. The most important operating parameters that influence the freshwater production rates are the partial pressure of air entrapped in the membrane pores and the overall thermal efficiency of the coupled system. This work provides a guide for geographical zone selection and operation of a membrane distillation production system driven by solar ponds that can help mitigate the stress on the water-energy nexus.  相似文献   

18.
Regenerable, high‐efficiency salt sorption materials are highly desirable for water treatment. Here, a thermoresponsive, amphoteric metal–organic framework (MOF) material is reported that can adsorb multiple salts from saline water at room temperature and effectively release the adsorbed salts into water at elevated temperature (e.g., 80 °C). The amphoteric MOF, integrated with both cation‐binding carboxylic groups and anion‐binding tertiary amine groups, is synthesized by introducing a polymer with tertiary amine groups into the cavities of a water‐stable MOF such as MIL‐121 with carboxylic groups inside its frameworks. The amphoterized MIL‐121 exhibits excellent salt adsorption properties, showing stable adsorption – desorption cycling performances and high LiCl, NaCl, MgCl2, and CaCl2 adsorption capacities of 0.56, 0.92, 0.25, and 0.39 mmol g?1, respectively. This work provides a novel, effective strategy for synthesizing new‐generation, environmental‐friendly, and responsive salt adsorption materials for efficient water desalination and purification.  相似文献   

19.
The self‐assembly kinetics and nanocrystal formation of the bacterial surface‐layer‐protein SbpA are studied with a combination of quartz crystal microbalance with dissipation monitoring (QCM‐D) and atomic force microscopy (AFM). Silane coupling agents, aminopropyltriethoxysilane (APTS) and octadecyltrichlorosilane (OTS), are used to vary the protein–surface interaction in order to induce new recrystallization pathways. The results show that the final S‐layer crystal lattice parameters (a = b = 14 nm, γ = 90°), the layer thickness (15 nm), and the adsorbed mass density (1700 ng cm?2) are independent of the surface chemistry. Nevertheless, the adsorption rate is five times faster on APTS and OTS than on SiO2, strongly affecting protein nucleation and growth. As a consequence, protein crystalline domains of 0.02 µm2 for APTS and 0.05 µm2 for OTS are formed, while for silicon dioxide the protein domains have a typical size of about 32 µm2. In addition, more‐rigid crystalline protein layers are formed on hydrophobic substrates. In situ AFM experiments reveal three different kinetic steps: adsorption, self‐assembly, and crystalline‐domain reorganization. These steps are corroborated by frequency–dissipation curves. Finally, it is shown that protein adsorption is a diffusion‐driven process. Experiments at different protein concentrations demonstrate that protein adsorption saturates at 0.05 mg mL?1 on silane‐coated substrates and at 0.07 mg mL?1 on hydrophilic silicon dioxide.  相似文献   

20.
Developing low‐cost photovoltaic absorbers that can harvest the short‐wave infrared (SWIR) part of the solar spectrum, which remains unharnessed by current Si‐based and perovskite photovoltaic technologies, is a prerequisite for making high‐efficiency, low‐cost tandem solar cells. Here, infrared PbS colloidal quantum dot (CQD) solar cells employing a hybrid inorganic–organic ligand exchange process that results in an external quantum efficiency of 80% at 1.35 µm are reported, leading to a short‐circuit current density of 34 mA cm?2 and a power conversion efficiency (PCE) up to 7.9%, which is a current record for SWIR CQD solar cells. When this cell is placed at the back of an MAPbI3 perovskite film, it delivers an extra 3.3% PCE by harnessing light beyond 750 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号