首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The unique structural and electronic properties of 2D materials, including the metal and metal‐free ones, have prompted intense exploration in the search for new catalysts. The construction of different heterostructures based on 2D materials offers great opportunities for boosting the catalytic activity in electo(photo)chemical reactions. Particularly, the merits resulting from the synergism of the constituent components and the fascinating properties at the interface are tremendously interesting. This scenario has now become the state‐of‐the‐art point in the development of active catalysts for assisting energy conversion reactions including water splitting and CO2 reduction. Here, starting from the theoretical background of the fundamental concepts, the progressive developments in the design and applications of heterostructures based on 2D materials are traced. Furthermore, a personal perspective on the exploration of 2D heterostructures for further potential application in catalysis is offered.  相似文献   

2.
Recent years have witnessed great developments in inorganic 2D nanomaterials for their unique dimensional confinement and diverse electronic energy bands. Precisely regulating their intrinsic electrical behaviors would bring superior electrical conductivity, rendering 2D nanomaterials ideal candidates for active materials in electrochemical applications when combined with the excellent reaction activity from the inorganic lattice. This Concept focuses on highly conducting inorganic 2D nanomaterials, including intrinsic metallic 2D nanomaterials and artificial highly conductive 2D nanomaterials. The intrinsic metallicity of 2D nanomaterials is derived from their closely packed atomic structures that ensure maximum overlapping of electron orbitals, while artificial highly conductive 2D nanomaterials could be achieved by designed methodologies of surface modification, intralayer ion doping, and lattice strain, in which atomic‐scale structural modulation plays a vital role in realizing conducting behaviors. Benefiting from fast electron transfer, high reaction activity, as well as large surface areas arising from the 2D inorganic lattice, highly conducting 2D nanomaterials open up prospects for enhancing performance in electrochemical catalysis and electrochemical capacitors. Conductive 2D inorganic nanomaterials promise higher efficiency for electrochemical applications of energy conversion and storage.  相似文献   

3.
Ultrathin two‐dimensional (2D) layered transition metal dichalcogenides (TMDs), such as MoS2, WS2, TiS2, TaS2, ReS2, MoSe2 and WSe2, have attracted considerable attention over the past six years owing to their unique properties and great potential in a wide range of applications. Aiming to achieve tunable properties and optimal application performances, great effort is devoted to the exploration of 2D multinary layered metal chalcogenide nanomaterials, which include ternary metal chalcogenides with well‐defined crystal structures, alloyed TMDs, heteroatom‐doped TMDs and 2D metal chalcogenide heteronanostructures. These novel 2D multinary layered metal chalcogenide nanomaterials exhibit some unique properties compared to 2D binary TMD counterparts, thus holding great promise in various potential applications including electronics/optoelectronics, catalysis, sensors, biomedicine, and energy storage and conversion with enhanced performances. This article focuses on the state‐of‐art progress on the preparation, characterization and applications of ultrathin 2D multinary layered metal chalcogenide nanomaterials.  相似文献   

4.
The chemical conversion of small molecules such as H2, H2O, O2, N2, CO2, and CH4 to energy and chemicals is critical for a sustainable energy future. However, the high chemical stability of these molecules poses grand challenges to the practical implementation of these processes. In this regard, computational approaches such as density functional theory, microkinetic modeling, data science, and machine learning have guided the rational design of catalysts by elucidating mechanistic insights, identifying active sites, and predicting catalytic activity. Here, the theory and methodologies for heterogeneous catalysis and their applications for small-molecule activation are reviewed. An overview of fundamental theory and key computational methods for designing catalysts, including the emerging data science techniques in particular, is given. Applications of these methods for finding efficient heterogeneous catalysts for the activation of the aforementioned small molecules are then surveyed. Finally, promising directions of the computational catalysis field for further outlooks are discussed, focusing on the challenges and opportunities for new methods.  相似文献   

5.
Great endeavors are undertaken to search for low‐cost, rich‐reserve, and highly efficient alternatives to replace precious‐metal catalysts, in order to cut costs and improve the efficiency of catalysts in industry. However, one major problem in metal catalysts, especially nonprecious‐metal catalysts, is their poor stability in real catalytic processes. Recently, a novel and promising strategy to construct 2D materials encapsulating nonprecious‐metal catalysts has exhibited inimitable advantages toward catalysis, especially under harsh conditions (e.g., strong acidity or alkalinity, high temperature, and high overpotential). The concept, which originates from unique electron penetration through the 2D crystal layer from the encapsulated metals to promote a catalytic reaction on the outermost surface of the 2D crystal, has been widely applied in a variety of reactions under harsh conditions. It has been vividly described as “chainmail for catalyst.” Herein, recent progress concerning this chainmail catalyst is reviewed, particularly focusing on the structural design and control with the associated electronic properties of such heterostructure catalysts, and also on their extensive applications in fuel cells, water splitting, CO2 conversion, solar cells, metal–air batteries, and heterogeneous catalysis. In addition, the current challenges that are faced in fundamental research and industrial application, and future opportunities for these fantastic catalytic materials are discussed.  相似文献   

6.
2D planar structures of nonlayered wide‐bandgap semiconductors enable distinguished electronic properties, desirable short wavelength emission, and facile construction of 2D heterojunction without lattice match. However, the growth of ultrathin 2D nonlayered materials is limited by their strong covalent bonded nature. Herein, the synthesis of ultrathin 2D nonlayered CuBr nanosheets with a thickness of about 0.91 nm and an edge size of 45 µm via a controllable self‐confined chemical vapor deposition method is described. The enhanced spin‐triplet exciton (Zf, 2.98 eV) luminescence and polarization‐enhanced second‐harmonic generation based on the 2D CuBr flakes demonstrate the potential of short‐wavelength luminescent applications. Solar‐blind and self‐driven ultraviolet (UV) photodetectors based on the as‐synthesized 2D CuBr flakes exhibit a high photoresponsivity of 3.17 A W?1, an external quantum efficiency of 1126%, and a detectivity (D*) of 1.4 × 1011 Jones, accompanied by a fast rise time of 32 ms and a decay time of 48 ms. The unique nonlayered structure and novel optical properties of the 2D CuBr flakes, together with their controllable growth, make them a highly promising candidate for future applications in short‐wavelength light‐emitting devices, nonlinear optical devices, and UV photodetectors.  相似文献   

7.
The oxygen evolution reaction (OER) is pivotal in multiple gas‐involved energy conversion technologies, such as water splitting, rechargeable metal–air batteries, and CO2/N2 electrolysis. Emerging anion‐redox chemistry provides exciting opportunities for boosting catalytic activity, and thus mastering lattice‐oxygen activation of metal oxides and identifying the origins are crucial for the development of advanced catalysts. Here, a strategy to activate surface lattice‐oxygen sites for OER catalysis via constructing a Ruddlesden–Popper/perovskite hybrid, which is prepared by a facile one‐pot self‐assembly method, is developed. As a proof‐of‐concept, the unique hybrid catalyst (RP/P‐LSCF) consists of a dominated Ruddlesden–Popper phase LaSr3Co1.5Fe1.5O10‐δ (RP‐LSCF) and second perovskite phase La0.25Sr0.75Co0.5Fe0.5O3‐δ (P‐LSCF), displaying exceptional OER activity. The RP/P‐LSCF achieves 10 mA cm?2 at a low overpotential of only 324 mV in 0.1 m KOH, surpassing the benchmark RuO2 and various state‐of‐the‐art metal oxides ever reported for OER, while showing significantly higher activity and stability than single RP‐LSCF oxide. The high catalytic performance for RP/P‐LSCF is attributed to the strong metal–oxygen covalency and high oxygen‐ion diffusion rate resulting from the phase mixture, which likely triggers the surface lattice‐oxygen activation to participate in OER. The success of Ruddlesden–Popper/perovskite hybrid construction creates a new direction to design advanced catalysts for various energy applications.  相似文献   

8.
The performance of perovskite nanocrystals (NCs) in optoelectronics and photocatalysis is severely limited by the presence of large amounts of crystal boundaries in NCs film that greatly restricts energy transfer. Creating heterostructures based on perovskite NCs and 2D materials is a common approach to improve the energy transport at the perovskite/2D materials interface. Herein, methylamine lead bromide (MAPbBr3, MA: CH3NH3+) perovskite NCs are homogeneously deposited on highly conductive few‐layer MXene (Ti3C2Tx) nanosheets to form heterostructures through an in situ solution growth method. An optimal mixed solvent ratio is essential to realize the growth of perovskite NCs on Ti3C2Tx nanosheets. Time‐resolved photoluminescence spectroscopy, transient absorption spectroscopy, and the photoresponse of electron‐ and hole‐only photoelectric conversion devices reveal the interfacial energy transfer behavior within MAPbBr3/Ti3C2Tx heterostructures. The present investigation may provide a useful guide toward use of halide perovskite/2D material heterostructures in applications such as photocatalysis as well as optoelectronics.  相似文献   

9.
Selective hydrogenation of quinoline and its derivatives is an important means to produce corresponding 1,2,3,4‐tetrahydroquinolines for a wide spectrum of applications. A facile and efficient “laser irradiation in liquid” technique to liberate the inaccessible highly dispersed Co? Nx active sites confined inside N‐doped carbon nanotubes is demonstrated. The liberated Co? Nx sites possess generic catalytic activities toward selective hydrogenation of quinoline and its hydroxyl, methyl, and halogen substituted derivatives into corresponding 1,2,3,4‐tetrahydroquinolines with almost 100% conversion efficiency and selectivity. This laser irradiation treatment approach should be widely applicable to unlock the catalytic powers of inaccessible catalytic active sites confined by other materials.  相似文献   

10.
Graphene-based materials have generated tremendous interest in a wide range of research activities. A wide variety of graphene related materials have been synthesised for potential applications in electronics, energy storage, catalysis, and gas sorption, storage, separation and sensing. Recently, gas sorption, storage and separation in porous nanocarbons and metal–organic frameworks have received increasing attention. In particular, the tuneable porosity, surface area and functionality of the lightweight and stable graphene-based materials open up great scope for those applications. Such structural features can be achieved by the design and control of the synthesis routes. Here, we highlight recent progresses and challenges in the syntheses of graphene-based materials with hierarchical pore structures, tuneable high surface area, chemical doping and surface functionalization for gas (H2, CH4, CO2, N2, NH3, NO2, H2S, SO2, etc.) sorption, storage and separation.  相似文献   

11.
Altering a material's catalytic properties would require identifying structural features that deliver electrochemically active surfaces. Single‐crystalline porous materials, combining the advantages of long‐range ordering of bulk crystals and large surface areas of porous materials, would create sufficient active surfaces by stabilizing 2D active moieties confined in lattice and may provide an alternative way to create high‐energy surfaces for electrocatalysis that are kinetically trapped. Here, a radical concept of building active metal–nitrogen moieties with unsaturated nitrogen coordination on a porous surface by directly growing metallic porous metal nitride (Fe3N and Ta5N6) single crystals at unprecedented 2 cm scale is reported. These porous single crystals demonstrate exceptionally high conductivity of 0.1–1.0 × 105 S cm?1, while the atomic surface layers of the porous crystals are confirmed to be an Fe termination layer for Fe3N and a Ta termination layer for Ta5N6. The unsaturated metal–nitrogen moieties (Fe6–N and Ta5–N3) with unique electronic structures demonstrate enhanced electrocatalysis performance and durability.  相似文献   

12.
A new family of single‐atom‐thick 2D germanium‐based materials with graphene‐like atomic arrangement, germanene and functionalized germanene, has attracted intensive attention due to their large bandgap and easily tailored electronic properties. Unlike carbon atoms in graphene, germanium atoms tend to adopt mixed sp2/sp3 hybridization in germanene, which makes it chemically active on the surface and allows its electronic states to be easily tuned by chemical functionalization. Impressive achievements in terms of the applications in energy storage and catalysis have been reported by using germanene and functionalized germanene. Herein, the fabrication of epitaxial germanene on different metallic substrates and its unique electronic properties are summarized. Then, the preparation strategies and the fundamental properties of hydrogen‐functionalized germanene (germanane or GeH) and other ligand‐terminated forms of germanene are presented. Finally, the progress of their applications in energy storage and catalysis, including both experimental results and theoretical predictions, is analyzed.  相似文献   

13.
Alloying in 2D results in the development of new, diverse, and versatile systems with prospects in bandgap engineering, catalysis, and energy storage. Tailoring structural phase transitions using alloying is a novel idea with implications in designing all 2D device architecture as the structural phases in 2D materials such as transition metal dichalcogenides are correlated with electronic phases. Here, this study develops a new growth strategy employing chemical vapor deposition to grow monolayer 2D alloys of Re‐doped MoSe2 with show composition tunable structural phase variations. The compositions where the phase transition is observed agree well with the theoretical predictions for these 2D systems. It is also shown that in addition to the predicted new electronic phases, these systems also provide opportunities to study novel phenomena such as magnetism which broadens the range of their applications.  相似文献   

14.
Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal‐organic frameworks, COFs are a new type of porous materials with well‐designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal‐free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF‐based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.  相似文献   

15.
Efficient charge separation and sufficiently exposed active sites are important for light‐driving Fenton catalysts. 0D/2D hybrids, especially quantum dots (QDs)/nanosheets (NSs), offer a better opportunity for improving photo‐Fenton activity due to their high charge mobility and more catalytic sites, which is highly desirable but remains a great challenge. Herein, a 0D hematite quantum dots/2D ultrathin g‐C3N4 nanosheets hybrid (Fe2O3 QDs/g‐C3N4 NS) is developed via a facile chemical reaction and subsequent low‐temperature calcination. As expected, the specially designed 0D/2D structure shows remarkable catalytic performance toward the removal of p‐nitrophenol. By virtue of large surface area, adequate active sites, and strong interfacial coupling, the 0D Fe2O3 QDs/2D g‐C3N4 nanosheets establish efficient charge transport paths by local in‐plane carbon species, expediting the separation and transfer of electron/hole pairs. Simultaneously, highly efficient charge mobility can lead to continuous and fast Fe(III)/Fe(II) conversion, promoting a cooperative effect between the photocatalysis and chemical activation of H2O2. The developed carbon‐intercalated 0D/2D hybrid provides a new insight in developing heterogeneous catalysis for a large variety of photoelectronic applications, not limited in photo‐Fenton catalysis.  相似文献   

16.
Visible‐light‐driven conversion of CO2 into chemical fuels is an intriguing approach to address the energy and environmental challenges. In principle, light harvesting and catalytic reactions can be both optimized by combining the merits of homogeneous and heterogeneous photocatalysts; however, the efficiency of charge transfer between light absorbers and catalytic sites is often too low to limit the overall photocatalytic performance. In this communication, it is reported that the single‐atom Co sites coordinated on the partially oxidized graphene nanosheets can serve as a highly active and durable heterogeneous catalyst for CO2 conversion, wherein the graphene bridges homogeneous light absorbers with single‐atom catalytic sites for the efficient transfer of photoexcited electrons. As a result, the turnover number for CO production reaches a high value of 678 with an unprecedented turnover frequency of 3.77 min?1, superior to those obtained with the state‐of‐the‐art heterogeneous photocatalysts. This work provides fresh insights into the design of catalytic sites toward photocatalytic CO2 conversion from the angle of single‐atom catalysis and highlights the role of charge kinetics in bridging the gap between heterogeneous and homogeneous photocatalysts.  相似文献   

17.
2D transition‐metal dichalcogenides (TMDCs) are currently the key to the development of nanoelectronics. However, TMDCs are predominantly nonmagnetic, greatly hindering the advancement of their spintronic applications. Here, an experimental realization of intrinsic magnetic ordering in a pristine TMDC lattice is reported, bringing a new class of ferromagnetic semiconductors among TMDCs. Through van der Waals (vdW) interaction engineering of 2D vanadium disulfide (VS2), dual regulation of spin properties and bandgap brings about intrinsic ferromagnetism along with a small bandgap, unravelling the decisive role of vdW gaps in determining the electronic states in 2D VS2. An overall control of the electronic states of VS2 is also demonstrated: bond‐enlarging triggering a metal‐to‐semiconductor electronic transition and bond‐compression inducing metallization in 2D VS2. The pristine VS2 lattice thus provides a new platform for precise manipulation of both charge and spin degrees of freedom in 2D TMDCs availing spintronic applications.  相似文献   

18.
As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO2) photoreduction into value‐added chemicals and solar fuels (for example, CO, HCOOH, CH3OH, CH4) has attracted more and more attention. In nature, photosynthetic organisms effectively convert CO2 and H2O to carbohydrates and oxygen (O2) using sunlight, which has inspired the development of low‐cost, stable, and effective artificial photocatalysts for CO2 photoreduction. Due to their low cost, facile synthesis, excellent light harvesting, multiple exciton generation, feasible charge‐carrier regulation, and abundant surface sites, semiconductor quantum dots (QDs) have recently been identified as one of the most promising materials for establishing highly efficient artificial photosystems. Recent advances in CO2 photoreduction using semiconductor QDs are highlighted. First, the unique photophysical and structural properties of semiconductor QDs, which enable their versatile applications in solar energy conversion, are analyzed. Recent applications of QDs in photocatalytic CO2 reduction are then introduced in three categories: binary II–VI semiconductor QDs (e.g., CdSe, CdS, and ZnSe), ternary I–III–VI semiconductor QDs (e.g., CuInS2 and CuAlS2), and perovskite‐type QDs (e.g., CsPbBr3, CH3NH3PbBr3, and Cs2AgBiBr6). Finally, the challenges and prospects in solar CO2 reduction with QDs in the future are discussed.  相似文献   

19.
Confined catalysis in a 2D system is of particular interest owing to the facet control of the catalysts and the anisotropic kinetics of reactants, which suppress side reactions and improve selectivity. Here, a 2D‐confined system consisting of intercalated Pt nanosheets within few‐layered graphene is demonstrated. The strong metal–substrate interaction between the Pt nanosheets and the graphene leads to the quasi‐2D growth of Pt with a unique (100)/(111)/(100) faceted structure, thus providing excellent catalytic activity and selectivity toward one‐carbon (C1) products for the glycerol oxidation reaction. A hierarchically porous graphene architecture, grown on carbon cloth, is used to fabricate the confined catalyst bed in order to enhance the mass‐diffusion limitation in interface‐confined reactions. Owing to its unique 3D porous structure, this graphene‐confined Pt catalyst exhibits an extraordinary mass activity of 2910 mA mgPt ?1 together with a formate selectivity of 79% at 60 °C. This paves the way toward rational designs of heterogeneous catalysts for energy‐related applications.  相似文献   

20.
Metallic phase 2D molybdenum disulfide (MoS2) is an emerging class of materials with remarkably higher electrical conductivity and catalytic activities. The goal of this study is to review the atomic structures and electrochemistry of metallic MoS2, which is essential for a wide range of existing and new enabling technologies. The scope of this paper ranges from the atomic structure, band structure, electrical and optical properties to fabrication methods, and major emerging applications in electrochemical energy storage and energy conversion. This paper also thoroughly covers the atomic structure–properties–application relationships of metallic MoS2. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of metallic MoS2 is advancing actual applications of this material. This new level of understanding also enables a myriad of new and exciting applications, which motivated this review. There are excellent reviews already on the traditional semiconducting MoS2, and this review, for the first time, focuses on the uniqueness of conducting metallic MoS2 for energy applications and offers brand new materials for clean energy application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号