首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The efficiency of perovskite solar cells (PSCs) has undergone rapid advancement due to great progress in materials development over the past decade and is under extensive study. Despite the significant challenges (e.g., recombination and hysteresis), both the single‐junction and tandem cells have gradually approached the theoretical efficiency limit. Herein, an overview is given of how passivation and crystallization reduce recombination and thus improve the device performance; how the materials of dominant layers (hole transporting layer (HTL), electron transporting layer (ETL), and absorber layer) affect the quality and optoelectronic properties of single‐junction PSCs; and how the materials development contributes to rapid efficiency enhancement of perovskite/Si tandem devices with monolithic and mechanically stacked configurations. The interface optimization, novel materials development, mixture strategy, and bandgap tuning are reviewed and analyzed. This is a review of the major factors determining efficiency, and how further improvements can be made on the performance of PSCs.  相似文献   

2.
All‐inorganic perovskites are considered to be one of the most appealing research hotspots in the field of perovskite photovoltaics in the past 3 years due to their superior thermal stability compared to their organic–inorganic hybrid counterparts. The power‐conversion efficiency has reached 17.06% and the number of important publications is ever increasing. Here, the progress of inorganic perovskites is systematically highlighted, covering materials design, preparation of high‐quality perovskite films, and avoidance of phase instabilities. Inorganic perovskites, nanocrystals, quantum dots, and lead‐free compounds are discussed and the corresponding device performances are reviewed, which have been realized on both rigid and flexible substrates. Methods for stabilization of the cubic phase of low‐bandgap inorganic perovskites are emphasized, which is a prerequisite for highly efficient and stable solar cells. In addition, energy loss mechanisms both in the bulk of the perovskite and at the interfaces of perovskite and charge selective layers are unraveled. Reported approaches to reduce these charge‐carrier recombination losses are summarized and complemented by methods proposed from our side. Finally, the potential of inorganic perovskites as stable absorbers is assessed, which opens up new perspectives toward the commercialization of inorganic perovskite solar cells.  相似文献   

3.
Wide‐bandgap (WBG) formamidinium–cesium (FA‐Cs) lead iodide–bromide mixed perovskites are promising materials for front cells well‐matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase instability, high open‐circuit voltage (Voc) deficit, and large hysteresis limit this otherwise promising technology. Here, by controlling the crystallization of FA‐Cs WBG perovskite with the aid of a formamide cosolvent, light‐induced phase segregation and hysteresis in perovskite solar cells are suppressed. The highly polar solvent additive formamide induces direct formation of the black perovskite phase, bypassing the yellow phases, thereby reducing the density of defects in films. As a result, the optimized WBG perovskite solar cells (PSCs) (Eg ≈ 1.75 eV) exhibit a high Voc of 1.23 V, reduced hysteresis, and a power conversion efficiency (PCE) of 17.8%. A PCE of 15.2% on 1.1 cm2 solar cells, the highest among the reported efficiencies for large‐area PSCs having this bandgap is also demonstrated. These perovskites show excellent phase stability and thermal stability, as well as long‐term air stability. They maintain ≈95% of their initial PCE after 1300 h of storage in dry air without encapsulation.  相似文献   

4.
Metal halide perovskites have recently attracted enormous attention for photovoltaic applications due to their superior optical and electrical properties. Lead (Pb) halide perovskites stand out among this material series, with a power conversion efficiency (PCE) over 25%. According to the Shockley–Queisser (SQ) limit, lead halide perovskites typically exhibit bandgaps that are not within the optimal range for single-junction solar cells. Partial or complete replacement of lead with tin (Sn) is gaining increasing research interest, due to the promise of further narrowing the bandgaps. This enables ideal solar utilization for single-junction solar cells as well as the construction of all-perovskite tandem solar cells. In addition, the usage of Sn provides a path to the fabrication of lead-free or Pb-reduced perovskite solar cells (PSCs). Recent progress in addressing the challenges of fabricating efficient Sn halide and mixed lead–tin (Pb–Sn) halide PSCs is summarized herein. Mixed Pb–Sn halide perovskites hold promise not only for higher efficiency and more stable single-junction solar cells but also for efficient all-perovskite monolithic tandem solar cells.  相似文献   

5.
6.
Large‐bandgap perovskites offer a route to improve the efficiency of energy capture in photovoltaics when employed in the front cell of perovskite–silicon tandems. Implementing perovskites as the front cell requires an inverted (p–i–n) architecture; this architecture is particularly effective at harnessing high‐energy photons and is compatible with ionic‐dopant‐free transport layers. Here, a power conversion efficiency of 21.6% is reported, the highest among inverted perovskite solar cells (PSCs). Only by introducing a secondary amine into the perovskite structure to form MA1?xDMAxPbI3 (MA is methylamine and DMA is dimethylamine) are defect density and carrier recombination suppressed to enable record performance. It is also found that the controlled inclusion of DMA increases the hydrophobicity and stability of films in ambient operating conditions: encapsulated devices maintain over 80% of their efficiency following 800 h of operation at the maximum power point, 30 times longer than reported in the best prior inverted PSCs. The unencapsulated devices show record operational stability in ambient air among PSCs.  相似文献   

7.
Organic bulk heterojunction solar cells (OSCs) and hybrid halide perovskite solar cells (PSCs) are two promising photovoltaic techniques for next‐generation energy conversion devices. The rapid increase in the power conversion efficiency (PCE) in OSCs and PSCs has profited from synergetic progresses in rational material synthesis for photoactive layers, device processing, and interface engineering. Interface properties in these two types of devices play a critical role in dictating the processes of charge extraction, surface trap passivation, and interfacial recombination. Therefore, there have been great efforts directed to improving the solar cell performance and device stability in terms of interface modification. Here, recent progress in interfacial doping with biopolymers and ionic salts to modulate the cathode interface properties in OSCs is reviewed. For the anode interface modification, recent strategies of improving the surface properties in widely used PEDOT:PSS for narrowband OSCs or replacing it by novel organic conjugated materials will be touched upon. Several recent approaches are also in focus to deal with interfacial traps and surface passivation in emerging PSCs. Finally, the current challenges and possible directions for the efforts toward further boosts of PCEs and stability via interface engineering are discussed.  相似文献   

8.
Organic–inorganic hybrid perovskite solar cells (PSCs) have seen a rapid rise in power conversion efficiencies in recent years; however, they still suffer from interfacial recombination and charge extraction losses at interfaces between the perovskite absorber and the charge–transport layers. Here, in situ back‐contact passivation (BCP) that reduces interfacial and extraction losses between the perovskite absorber and the hole transport layer (HTL) is reported. A thin layer of nondoped semiconducting polymer at the perovskite/HTL interface is introduced and it is shown that the use of the semiconductor polymer permits—in contrast with previously studied insulator‐based passivants—the use of a relatively thick passivating layer. It is shown that a flat‐band alignment between the perovskite and polymer passivation layers achieves a high photovoltage and fill factor: the resultant BCP enables a photovoltage of 1.15 V and a fill factor of 83% in 1.53 eV bandgap PSCs, leading to an efficiency of 21.6% in planar solar cells.  相似文献   

9.
钙钛矿太阳能电池(Perovskite solar cells,PSCs)由于制备工艺简单、价格便宜、转换效率高、可制备柔性器件等优点引起广泛关注。近年来,钙钛矿太阳能电池的转换效率不断被刷新,迅速实现了对多晶硅太阳能电池的超越,使其具有巨大的商业潜力。然而,稳定性成为阻碍钙钛矿太阳能电池商业化的一大问题。介绍了钙钛矿太阳能电池的结构,综述了钙钛矿太阳能电池所取得的研究进展,总结了获得高效率钙钛矿太阳能电池的方法,重点分析了提高钙钛矿太阳能电池稳定性的策略,并指出钙钛矿太阳能电池的发展方向。  相似文献   

10.
Organic–inorganic hybrid halide perovskites (e.g., MAPbI3) have recently emerged as novel active materials for photovoltaic applications with power conversion efficiency over 22%. Conventional perovskite solar cells (PSCs); however, suffer the issue that lead is toxic to the environment and organisms for a long time and is hard to excrete from the body. Therefore, it is imperative to find environmentally‐friendly metal ions to replace lead for the further development of PSCs. Previous work has demonstrated that Sn, Ge, Cu, Bi, and Sb ions could be used as alternative ions in perovskite configurations to form a new environmentally‐friendly lead‐free perovskite structure. Here, we review recent progress on lead‐free PSCs in terms of the theoretical insight and experimental explorations of the crystal structure of lead‐free perovskite, thin film deposition, and device performance. We also discuss the importance of obtaining further understanding of the fundamental properties of lead‐free hybrid perovskites, especially those related to photophysics.  相似文献   

11.
The development of conjugated alternating donor–acceptor (D–A) copolymers with various electron‐rich and electron‐deficient units in polymer backbones has boosted the power conversion efficiency (PCE) over 17% for polymer solar cells (PSCs) over the past two decades. However, further enhancements in PCEs for PSCs are still imperative to compensate their imperfect stability for fulfilling practical applications. Meanwhile development of these alternating D–A copolymers is highly demanding in creative design and syntheses of novel D and/or A monomers. In this regard, when being possible to adopt an existing monomer unit as a third component from its libraries, either a D′ unit or an A′ moiety, to the parent D–A type polymer backbones to afford conjugated D–A terpolymers, it will give a facile and cost‐effective method to improve their light absorption and tune energy levels and also interchain packing synergistically. Moreover, the rationally controlled stoichiometry for these components in such terpolymers also provides access for further fine‐tuning these factors, thus resulting in high‐performance PSCs. Herein, based on their unique features, the recent progress of conjugated D–A terpolymers for efficient PSCs is reviewed and it is discussed how these factors influence their photovoltaic performance, for providing useful guidelines to design new terpolymers toward high‐efficiency PSCs.  相似文献   

12.
Exploiting organic/inorganic hybrid perovskite solar cells (PSCs) with reduced Pb content is very important for developing environment‐friendly photovoltaics. Utilizing of Pb–Sn alloying perovskite is considered as an efficient route to reduce the risk of ecosystem pollution. However, the trade‐off between device performance and Sn substitution ratio due to the instability of Sn2+ is a current dilemma. Here, for the first time, the highly efficient Pb–Sn–Cu ternary PSCs are reported by partial replacing of PbI2 with SnI2 and CuBr2. Sn2+ substitution results in a redshift of the absorption onset, whereas worsens the film quality. Interestingly, Cu2+ introduction can passivate the trap sites at the crystal boundaries of Pb–Sn perovskites effectively. Consequently, a power conversion efficiency as high as 21.08% in inverted planar Pb–Sn–Cu ternary PSCs is approached. The finding opens a new route toward the fabrication of high efficiency Pb–Sn alloying perovskite solar cells by Cu2+ passivation.  相似文献   

13.
Developing environmentally friendly perovskites has become important in solving the toxicity issue of lead‐based perovskite solar cells. Here, the first double perovskite (Cs2AgBiBr6) solar cells using the planar structure are demonstrated. The prepared Cs2AgBiBr6 films are composed of high‐crystal‐quality grains with diameters equal to the film thickness, thus minimizing the grain boundary length and the carrier recombination. These high‐quality double perovskite films show long electron–hole diffusion lengths greater than 100 nm, enabling the fabrication of planar structure double perovskite solar cells. The resulting solar cells based on planar TiO2 exhibit an average power conversion efficiency over 1%. This work represents an important step forward toward the realization of environmentally friendly solar cells and also has important implications for the applications of double perovskites in other optoelectronic devices.  相似文献   

14.
Owing to the merits of low cost and high power conversion efficiency (PCE), perovskite solar cells (PSCs) have become the best candidate to replace the commonly used silicon solar cells. However, PSCs have been slow to enter the market for a number of reasons, including poor stability, high toxicity, and rigorous preparation process. Passivation strategies including surface passivation and bulk passivation have been successfully applied to improve the device performance of PSCs. The passivation of the defects at the buried interface, which is regarded as a key strategy to breakthrough the device efficiency and stability of PSCs in the future, is ongoing with challenge. Herein, in detail the recent passivation of the buried interface is introduced from three aspects: perovskite layer, buried interlayer, and transport layer. The passivation effect of the buried interface is clearly demonstrated through three categories of salts, organics, and 2D materials. In addition, the transport layer is classified into electron transport layer (ETL) and hole transport layer (HTL). These classifications can help to have a clear understanding of substances which generate passivating effect and guide the continuous promotion of the follow-up buried interface passivating work.  相似文献   

15.
Organic–inorganic hybrid perovskite materials are receiving increasing attention and becoming star materials on account of their unique and intriguing optical and electrical properties, such as high molar extinction coefficient, wide absorption spectrum, low excitonic binding energy, ambipolar carrier transport property, long carrier diffusion length, and high defects tolerance. Although a high power conversion efficiency (PCE) of up to 22.7% is certified for perovskite solar cells (PSCs), it is still far from the theoretical Shockley–Queisser limit efficiency (30.5%). Obviously, trap‐assisted nonradiative (also called Shockley–Read–Hall, SRH) recombination in perovskite films and interface recombination should be mainly responsible for the above efficiency distance. Here, recent research advancements in suppressing bulk SRH recombination and interface recombination are systematically investigated. For reducing SRH recombination in the films, engineering perovskite composition, additives, dimensionality, grain orientation, nonstoichiometric approach, precursor solution, and post‐treatment are explored. The focus herein is on the recombination at perovskite/electron‐transporting material and perovskite/hole‐transporting material interfaces in normal or inverted PSCs. Strategies for suppressing bulk and interface recombination are described. Additionally, the effect of trap‐assisted nonradiative recombination on hysteresis and stability of PSCs is discussed. Finally, possible solutions and reasonable prospects for suppressing recombination losses are presented.  相似文献   

16.
All‐polymer solar cells (all‐PSCs) based on n‐ and p‐type polymers have emerged as promising alternatives to fullerene‐based solar cells due to their unique advantages such as good chemical and electronic adjustability, and better thermal and photochemical stabilities. Rapid advances have been made in the development of n‐type polymers consisting of various electron acceptor units for all‐PSCs. So far, more than 200 n‐type polymer acceptors have been reported. In the last seven years, the power conversion efficiency (PCE) of all‐PSCs rapidly increased and has now surpassed 10%, meaning they are approaching the performance of state‐of‐the‐art solar cells using fullerene derivatives as acceptors. This review discusses the design criteria, synthesis, and structure–property relationships of n‐type polymers that have been used in all‐PSCs. Additionally, it highlights the recent progress toward photovoltaic performance enhancement of binary, ternary, and tandem all‐PSCs. Finally, the challenges and prospects for further development of all‐PSCs are briefly considered.  相似文献   

17.
Currently, blade-coated perovskite solar cells (PSCs) with high power conversion efficiencies (PCEs), that is, greater than 20%, normally employ methylammonium lead tri-iodide with a sub-optimal bandgap. Alloyed perovskites with formamidinium (FA) cation have narrower bandgap and thus enhance device photocurrent. However, FA-alloyed perovskites show low phase stability and high moisture sensitivity. Here, it is reported that incorporating 0.83 molar percent organic halide salts (OHs) into perovskite inks enables phase-pure, highly crystalline FA-alloyed perovskites with extraordinary optoelectronic properties. The OH molecules modulate the crystal growth, enhance the phase stability, passivate ionic defects at the surface and/or grain boundaries, and enhance the moisture stability of the perovskite film. A high efficiency of 22.0% under 1 sun illumination for blade-coated PSCs is demonstrated with an open-circuit voltage of 1.18 V, corresponding to a very small voltage deficit of 0.33 V, and significantly improved operational stability with 96% of the initial efficiency retained under one sun illumination for 500 h.  相似文献   

18.
Lead halide perovskite solar cells (PSCs) with the high power conversion efficiency (PCE) typically use mesoporous metal oxide nanoparticles as the scaffold and electron‐transport layers. However, the traditional mesoporous layer suffers from low electron conductivity and severe carrier recombination. Here, antimony‐doped tin oxide nanorod arrays are proposed as novel transparent conductive mesoporous layers in PSCs. Such a mesoporous layer improves the electron transport as well as light utilization. To resolve the common problem of uneven growth of perovskite on rough surface, the dynamic two‐step spin coating strategy is proposed to prepare highly smooth, dense, and crystallized perovskite films with micrometer‐scale grains, largely reducing the carrier recombination ratio. The conductive mesoporous layer and high‐quality perovskite film eventually render the PSC with a remarkable PCE of 20.1% with excellent reproducibility. These findings provide a new avenue to further design high‐efficiency PSCs from the aspect of carrier transport and recombination.  相似文献   

19.
Perovskite solar cells with all‐organic transport layers exhibit efficiencies rivaling their counterparts that employ inorganic transport layers, while avoiding high‐temperature processing. Herein, it is investigated how the choice of the fullerene derivative employed in the electron‐transporting layer of inverted perovskite cells affects the open‐circuit voltage (VOC). It is shown that nonradiative recombination mediated by the electron‐transporting layer is the limiting factor for the VOC in the cells. By inserting an ultrathin layer of an insulating polymer between the active CH3NH3PbI3 perovskite and the fullerene, an external radiative efficiency of up to 0.3%, a VOC as high as 1.16 V, and a power conversion efficiency of 19.4% are realized. The results show that the reduction of nonradiative recombination due to charge‐blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high VOC and efficiency.  相似文献   

20.
2D perovskites have emerged as one of the most promising photovoltaic materials owing to their excellent stability compared with their 3D counterparts. However, in typical 2D perovskites, the highly conductive inorganic layers are isolated by large organic cations leading to quantum confinement and thus inferior electrical conductivity across layers. To address this issue, the large organic cations are replaced with small propane‐1,3‐diammonium (PDA) cations to reduce distance between the inorganic perovskite layers. As shown by optical characterizations, quantum confinement is no longer dominating in the PDA‐based 2D perovskites. This leads to considerable enhancement of charge transport as confirmed with electrochemical impedance spectroscopy, time‐resolved photoluminescence, and mobility measurements. The improved electric properties of the interlayer‐engineered 2D perovskites yield a power conversion efficiency of 13.0%. Furthermore, environmental stabilities of the PDA‐based 2D perovskites are improved. PDA‐based 2D perovskite solar cells (PSCs) with encapsulation can retain over 90% of their efficiency upon storage for over 1000 h, and PSCs without encapsulation can maintain their initial efficiency at 70 °C for over 100 h, which exhibit promising stabilities. These results reveal excellent optoelectronic properties and intrinsic stabilities of the layered perovskites with reduced interlayer distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号