首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benefiting from metal–organic frameworks (MOFs) unique structural characteristics, their versatility in composition and structure has been well explored in electrochemical oxygen evolution reaction (OER) processes. Here, a ligand/ionic exchange phenomenon of MOFs is reported in alkaline solution due to their poor stability, and the active species and reaction mechanism of MOFs are revealed in the OER process. A series of mixed Ni‐MOFs and Fe‐MOFs are synthesized by straightforward sonication and then directly used as catalyst candidates for OER in alkaline electrolyte. It can be confirmed via ex situ transmission electron microscopic images and X‐ray diffraction patterns analysis, that the bimetallic hydroxide (NiFe‐LDH) is generated in 1.0 m KOH in situ and acts as protagonist for oxygen evolution. The optimized catalyst (FN‐2) exhibits a lower overpotential (275 mV at a current density of 10 mA cm?2) and excellent long‐term stability (strong current density for 100 h without fading). The revelation of the real active species of MOF materials may contribute to better understanding of the reaction mechanism.  相似文献   

2.
Direct use of metal–organic frameworks (MOFs) with robust pore structures, large surface areas, and high density of coordinatively unsaturated metal sites as electrochemical active materials is highly desirable (rather than using as templates and/or precursors for high‐temperature calcination), but this is practically hindered by the poor conductivity and low accessibility of active sites in the bulk form. Herein, a universal vapor‐phase method is reported to grow well‐aligned MOFs on conductive carbon cloth (CC) by using metal hydroxyl fluorides with diverse morphologies as self‐sacrificial templates. Specifically, by further partially on‐site generating active Co3S4 species from Co ions in the echinops‐like Co‐based MOF (EC‐MOF) through a controlled vulcanization approach, the resulting Co3S4/EC‐MOF hybrid exhibits much enhanced electrocatalytic performance toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with overpotentials of 84 and 226 mV required to reach a current density of 10 mA cm?2, respectively. Density functional theory (DFT) calculations and experimental results reveal that the electron transfer between Co3S4 species and EC‐MOF can decrease the electron density of the Co d‐orbital, resulting in more electrocatalytically optimized adsorption properties for Co. This study will open up a new avenue for designing highly ordered MOF‐based surface active materials for various electrochemical energy applications.  相似文献   

3.
Herein, an approach is reported for fabrication of Co‐Nx‐embedded 1D porous carbon nanofibers (CNFs) with graphitic carbon‐encased Co nanoparticles originated from metal–organic frameworks (MOFs), which is further explored as a bifunctional electrocatalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Electrochemical results reveal that the electrocatalyst prepared by pyrolysis at 1000 °C (CoNC‐CNF‐1000) exhibits excellent catalytic activity toward ORR that favors the four‐electron ORR process and outstanding long‐term stability with 86% current retention after 40 000 s. Meanwhile, it also shows superior electrocatalytic activity toward OER, reaching a lower potential of 1.68 V at 10 mA cm?2 and a potential gap of 0.88 V between the OER potential (at 10 mA cm?2) and the ORR half‐wave potential. The ORR and OER performance of CoNC‐CNF‐1000 have outperformed commercial Pt/C and most nonprecious‐metal catalysts reported to date. The remarkable ORR and OER catalytic performance can be mainly attributable to the unique 1D structure, such as higher graphitization degree beneficial for electronic mobility, hierarchical porosity facilitating the mass transport, and highly dispersed CoNxC active sites functionalized carbon framework. This strategy will shed light on the development of other MOF‐based carbon nanofibers for energy storage and electrochemical devices.  相似文献   

4.
Metal–organic frameworks (MOFs) with tunable compositions and morphologies are recognized as efficient self‐sacrificial templates to achieve function‐oriented nanostructured materials. Moreover, it is urgently needed to develop highly efficient noble metal‐free oxygen evolution reaction (OER) electrocatalysts to accelerate the development of overall water splitting green energy conversion systems. Herein, a facile and cost‐efficient strategy to synthesize Co9S8 nanoparticles‐embedded N/S‐codoped carbon nanofibers (Co9S8/NSCNFs) as highly active OER catalyst is developed. The hybrid precursor of core–shell ZIF‐wrapped CdS nanowires is first prepared and then leads to the formation of uniformly dispersed Co9S8/N, S‐codoped carbon nanocomposites through a one‐step calcination reaction. The optimal Co9S8/NSCNFs‐850 is demonstrated to possess excellent electrocatalytic performance for OER in 1.0 m KOH solution, affording a low overpotential of 302 mV to reach the current density of 10 mA cm?2, a small Tafel slope of 54 mV dec?1, and superior long‐term stability for 1000 cyclic voltammetry cycles. The favorable results raise a concept of exploring more MOF‐based nanohybrids as precursors to induce the synthesis of novel porous nanomaterials as non‐noble‐metal electrocatalysts for sustainable energy conversion.  相似文献   

5.
Conjugated coordination polymers (CPs) with designable and predictable structures have drawn tremendous attention in recent years. However, the poor electrical conductivity and low structural stability seriously restrict their practical applications in electronic devices. Herein, the rational design and synthesis of a hierarchically structured 2D bimetallic CoNi‐hexaaminobenzene CPs derived from Co(OH)2 are reported as an efficient oxygen evolution reaction (OER) self‐supported electrode. The as‐obtained electrode possesses high electrochemical surface area and intrinsic activity, exhibiting high electrochemical catalytic activity, favorable reaction kinetics performance, and strong durability compared with those of the powder catalysts. As a result, the electrode delivers low overpotential of 219 mV @ 10 mA cm?2 and Tafel slope of 42 mV dec?1 as well as 91.3% retention of current density after 24 h of reaction time. The results of density functional theory computations reveal that the synergistic effect of Co and Ni plays an important role in OER. This work not only presents a strategy to fabricate advanced self‐supported electrodes with abundant and dense active sites, but also promotes the development of conjugated CPs for electrocatalysis.  相似文献   

6.
Oxygen evolution reaction (OER) is crucial in many renewable electrochemical technologies including regenerative fuel cells, rechargeable metal–air batteries, and water splitting. It is found that abundant active sites with favorable electronic structure and high electrical conductivity play a dominant role in achieving high electrocatalytic efficiency of perovskites, thus efficient strategies need to be designed to generate multiple beneficial factors for OER. Here, highlighted is an unusual super‐exchange effect in ferromagnetic perovskite oxide to optimize active sites and enhance electrical conductivity. A systematic exploration about the composition‐dependent OER activity in SrCo1x Rux O3?δ (denoted as SCRx) (x = 0.0–1.0) perovskite is displayed with special attention on the role of super‐exchange interaction between high spin (HS) Co3+ and Ru5+ ions. Induced by the unique Co3+–O–Ru5+ super‐exchange interactions, the SCR0.1 is endowed with abundant OER active species including Co3+/Co4+, Ru5+, and O22?/O?, high electrical conductivity, and metal–oxygen covalency. Benefiting from these advantageous factors for OER electrocatalysis, the optimized SCR0.1 catalyst exhibits a remarkable activity with a low overpotential of 360 mV at 10 mA cm?2, which exceeds the benchmark RuO2 and most well‐known perovskite oxides reported so far, while maintaining excellent durability. This work provides a new pathway in developing perovskite catalysts for efficient catalysis.  相似文献   

7.
Metal–organic frameworks (MOFs) and MOF‐derived materials have recently attracted considerable interest as alternatives to noble‐metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N‐C materials (C‐MOF‐C2‐T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C‐MOF‐C2‐900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N‐doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO2, respectively. Primary Zn–air batteries based on C‐MOF‐900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h gZn–1 under 10 mA cm–2. Rechargeable Zn–air batteries based on C‐MOF‐C2‐900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm–2), along with an excellent cycling stability with no increase in polarization even after 120 h – outperform their counterparts based on noble‐metal‐based air electrodes. The resultant rechargeable Zn–air batteries are used to efficiently power electrochemical water‐splitting systems, demonstrating promising potential as integrated green energy systems for practical applications.  相似文献   

8.
Non‐noble metal catalysts for high‐active electrocatalytic oxygen evolution reaction (OER) are essential in large‐scale application for water splitting. Herein, tricomponent metal phosphides with hollow structures are synthesized from cobalt‐contained metal organic frameworks (MOFs), i.e., ZIF‐67, by tailoring the feeding ratios of Ni and Fe, followed by a high‐temperature reduction and a subsequent phosphidation process. Excellent OER activity and long‐time stability are achieved in 1 m NaOH aqueous solution, with an overpotential of 329 mV at 10 mA cm?2 and Tafel slope of 48.2 mV dec?1, even superior to the noble metal‐based catalyst. It is evidenced that the formed (oxyhydr)oxide/phosphate species by in situ electrochemical surface oxidation are responsible for active OER. Accordingly, the simultaneous introduction of external Ni and Fe elements significantly influences the electronic structures of the parent metal phosphides, leading to the in situ electrochemical formation of surface active layer with decreased OER activation energy for greatly improved water oxidation performance. This electronic structure tuning strategy by introducing multicomponent metals demonstrates a versatile method to use MOFs as precursors for synthesizing high‐efficient water splitting electrocatalysts.  相似文献   

9.
The oxygen evolution reaction (OER) catalytic activity of a transition metal oxides/hydroxides based electrocatalyst is related to its pseudocapacitance at potentials lower than the OER standard potential. Thus, a well‐defined pseudocapacitance could be a great supplement to boost OER. Herein, a highly pseudocapacitive Ni‐Fe‐Co hydroxides/N‐doped carbon nanoplates (NiCoFe‐NC)‐based electrocatalyst is synthesized using a facile one‐pot solvothermal approach. The NiCoFe‐NC has a great pseudocapacitive performance with 1849 F g?1 specific capacitance and 31.5 Wh kg?1 energy density. This material also exhibits an excellent OER catalytic activity comparable to the benchmark RuO2 catalysts (an initiating overpotential of 160 mV and delivering 10 mA cm?2 current density at 250 mV, with a Tafel slope of 31 mV dec?1). The catalytic performance of the optimized NiCoFe‐NC catalyst could keep 24 h. X‐ray photoelectron spectroscopy, electrochemically active surface area, and other physicochemical and electrochemical analyses reveal that its great OER catalytic activity is ascribed to the Ni‐Co hydroxides with modular 2‐Dimensional layered structure, the synergistic interactions among the Fe(III) species and Ni, Co metal centers, and the improved hydrophily endowed by the incorporation of N‐doped carbon hydrogel. This work might provide a useful and general strategy to design and synthesize high‐performance metal (hydr)oxides OER electrocatalysts.  相似文献   

10.
Spinel and perovskite with distinctive crystal structures are two of the most popular material families in electrocatalysis, which, however, usually show poor conductivity, causing a negative effect on the charge transfer process during electrochemical reactions. Herein, a highly conductive inverse spinel (Fe3O4) and anti‐perovskite (Ni3FeN) hetero‐structured nanocomposite is reported as a superior oxygen evolution electrocatalyst, which can be facilely prepared based on a one‐pot synthesis strategy. Thanks to the strong hybridization between Ni/Fe 3d and N 2p orbitals, the Ni3FeN is easily transformed into NiFe (oxy)hydroxide as the real active species during the oxygen evolution reaction (OER) process, while the Fe3O4 component with low O‐p band center relative to Fermi level is structurally stable. As a result, both high surface reactivity and bulk electronic transport ability are reached. By directly growing Fe3O4/Ni3FeN heterostructure on freestanding carbon fiber paper and testing based on the three‐electrode configuration, it requires only 160 mV overpotential to deliver a current density of 30 mA cm?2 for OER. Also, negligible performance decay is observed within a prolonged test period of 100 h. This work sheds light on the rational design of novel heterostructure materials for electrocatalysis.  相似文献   

11.
Carbides are commonly regarded as efficient hydrogen evolution reaction (HER) catalysts, but their poor oxygen evolution reaction (OER) catalytic activities seriously limit their practical application in overall water splitting. Here, vertically aligned porous cobalt tungsten carbide nanosheet embedded in N‐doped carbon matrix (Co6W6C@NC) is successfully constructed on flexible carbon cloth (CC) as an efficient bifunctional electrocatalyst for overall water splitting via a facile metal–organic framework (MOF) derived method. The synergistic effect of Co and W atoms effectively tailors the electron state of carbide, optimizing the hydrogen‐binding energy. Thus Co6W6C@NC shows an enhanced HER performance with an overpotential of 59 mV at a current density of ?10 mA cm?2. Besides, Co6W6C@NC easily in situ transforms into tungsten actived cobalt oxide/hydroxide during the OER process, serving as OER active species, which provides an excellent OER activity with an overpotential of 286 mV at a current density of ?10 mA cm?2. The water splitting device, by applying Co6W6C@NC as both the cathode and anode, requires a low cell voltage of 1.585 V at 10 mA cm?2 with the great stability in alkaline solution. This work provides a feasible strategy to fabricate bimetallic carbides and explores their possibility as bifunctional catalysts toward overall water splitting.  相似文献   

12.
Bifunctional electrocatalysis for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) constitutes the bottleneck of various sustainable energy devices and systems like rechargeable metal–air batteries. Emerging catalyst materials are strongly requested toward superior electrocatalytic activities and practical applications. In this study, transition metal hydroxysulfides are presented as bifunctional OER/ORR electrocatalysts for Zn–air batteries. By simply immersing Co‐based hydroxide precursor into solution with high‐concentration S2?, transition metal hydroxides convert to hydroxysulfides with excellent morphology preservation at room temperature. The as‐obtained Co‐based metal hydroxysulfides are with high intrinsic reactivity and electrical conductivity. The electron structure of the active sites is adjusted by anion modulation. The potential for 10 mA cm?2 OER current density is 1.588 V versus reversible hydrogen electrode (RHE), and the ORR half‐wave potential is 0.721 V versus RHE, with a potential gap of 0.867 V for bifunctional oxygen electrocatalysis. The Co3FeS1.5(OH)6 hydroxysulfides are employed in the air electrode for a rechargeable Zn–air battery with a small overpotential of 0.86 V at 20.0 mA cm?2, a high specific capacity of 898 mAh g?1, and a long cycling life, which is much better than Pt and Ir‐based electrocatalyst in Zn–air batteries.  相似文献   

13.
A facile H2O2 oxidation treatment to tune the properties of metal disulfides for oxygen evolution reaction (OER) activity enhancement is introduced. With this method, the degree of oxidation can be readily controlled and the effect of surface S residues in the resulted metal (oxy)hydroxides for the OER is revealed for the first time. The developed NiFe (oxy)hydroxide catalyst with residual S demonstrates an extraordinarily low OER overpotential of 190 mV at the current density of 10 mA cm?2 after coupling with carbon nanotubes, and outstanding performance in Zn–air battery tests. Theoretical calculation suggests that the surface S residues can significantly reduce the adsorption free energy difference between O* and OH* intermediates on the Fe sites, which should account for the high OER activity of NiFe (oxy)hydroxide catalysts. This work provides significant insight regarding the effect of surface heteroatom residues in OER electrocatalysis and offers a new strategy to design high‐performance and cost‐efficient OER catalysts.  相似文献   

14.
An efficient metal‐free catalyst is presented for oxygen evolution and reduction based on oxidized laser‐induced graphene (LIG‐O). The oxidation of LIG by O2 plasma to form LIG‐O boosts its performance in the oxygen evolution reaction (OER), exhibiting a low onset potential of 260 mV with a low Tafel slope of 49 mV dec?1, as well as an increased activity for the oxygen reduction reaction. Additionally, LIG‐O shows unexpectedly high activity in catalyzing Li2O2 decomposition in Li‐O2 batteries. The overpotential upon charging is decreased from 1.01 V in LIG to 0.63 V in LIG‐O. The oxygen‐containing groups make essential contributions, not only by providing the active sites, but also by facilitating the adsorption of OER intermediates and lowering the activation energy.  相似文献   

15.
Multivariate metal–organic framework (MOF) is an ideal electrocatalytic material due to the synergistic effect of multiple metal active sites. In this study, a series of ternary M-NiMOF (M = Co, Cu) through a simple self-templated strategy that the Co/Cu MOF isomorphically grows in situ on the surface of NiMOF is designed. Owing to the electron rearrange of adjacent metals, the ternary CoCu-NiMOFs demonstrate the improved intrinsic electrocatalytic activity. At optimized conditions, the ternary Co3Cu-Ni2MOFs nanosheets give the excellent oxygen evolution reaction (OER) performance of current density of 10 mA cm−2 at low overpotential of 288 mV with a Tafel slope of 87 mV dec−1, which is superior to that of bimetallic nanosheet and ternary microflowers. The low free energy change of potential-determining step identifies that the OER process is favorable at Cu–Co concerted sites along with strong synergistic effect of Ni nodes. Partially oxidized metal sites also reduce the electron density, thus accelerating the OER catalytic rate. The self-templated strategy provides a universal tool to design multivariate MOF electrocatalysts for highly efficient energy transduction.  相似文献   

16.
Freestanding bifunctional electrodes with outstanding oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) properties are of great significance for zinc–air batteries, attributed to the avoided use of organic binder and strong adhesion with substrates. Herein, a strategy is developed to fabricate freestanding bifunctional electrodes from the predeposited nickel nanoparticles (Ni‐NCNT) on carbon fiber paper. The steric effect of monodispersed SiO2 nanospheres limits the configuration of carbon atoms forming 3D interconnected nanotubes with uniformly distributed NiN2 active sites. The bifunctional electrodes (Ni‐NCNT) demonstrate ideal ORR and OER properties. The zinc–air batteries assembled with Ni‐NCNT directly exhibit extremely outstanding long term stability (2250 cycles with 10 mA cm?2 charge/discharge current density) along with high power density of 120 mV cm?2 and specific capacity of 834.1 mA h g?1. This work provides a new view to optimize the distribution of active sites and the electrode structure.  相似文献   

17.
Metal–organic frameworks (MOFs) are very promising self‐sacrificing templates for the large‐scale fabrication of new functional materials owing to their versatile functionalities and tunable porosities. Most conventional metal oxide electrodes derived from MOFs are limited by the low abundance of incorporated metal elements. This study reports a new strategy for the synthesis of multicomponent active metal oxides by the pyrolysis of polymetallic MOF precursors. A hollow N‐doped carbon‐coated ZnO/ZnCo2O4/CuCo2O4 nanohybrid is prepared by the thermal annealing of a polymetallic MOF with ammonium bicarbonate as a pore‐forming agent. This is the first report on the rational design and preparation of a hybrid composed of three active metal oxide components originating from MOF precursors. Interestingly, as a lithium‐ion battery anode, the developed electrode delivers a reversible capacity of 1742 mAh g?1 after 500 cycles at a current density of 0.3 mA g?1. Furthermore, the material shows large storage capacities (1009 and 667 mAh g?1), even at high current flow (3 and 10 A g?1). The remarkable high‐rate capability and outstanding long‐life cycling stability of the multidoped metal oxide benefits from the carbon‐coated integrated nanostructure with a hollow interior and the three active metal oxide components.  相似文献   

18.
The intrinsic catalytic activity at 10 mA cm?2 for oxygen evolution reaction (OER) is currently working out at overpotentials higher than 320 mV. A highly efficient electrocatalyst should possess both active sites and high conductivity; however, the loading of powder catalysts on electrodes may often suffer from the large resistance between catalysts and current collectors. This work reports a class of bulk amorphous NiFeP materials with metallic bonds from the viewpoint of electrode design. The materials reported here perfectly combine high macroscopic conductivity with surface active sites, and can be directly used as the electrodes with active sites toward high OER activity in both alkaline and acidic electrolytes. Specifically, a low overpotential of 219 mV is achieved at the geometric current density 10 mA cm?2 in an alkaline electrolyte, with the Tafel slope of 32 mV dec?1 and intrinsic overpotential of 280 mV. Meanwhile, an overpotential of 540 mV at 10 mA cm?2 is attained in an acidic electrolyte and stable for over 30 h, which is the best OER performance in both alkaline and acidic media. This work provides a different angle for the design of high‐performance OER electrocatalysts and facilitates the device applications of electrocatalysts.  相似文献   

19.
Designing elaborate nanostructures and engineering defects have been promising approaches to fabricate cost‐efficient electrocatalysts toward overall water splitting. In this work, a controllable Prussian‐blue‐analogue‐sacrificed strategy followed by an annealing process to harvest defect‐rich Ni‐Fe‐doped K0.23MnO2 cubic nanoflowers (Ni‐Fe‐K0.23MnO2 CNFs‐300) as highly active bifunctional catalysts for oxygen and hydrogen evolution reactions (OER and HER) is reported. Benefiting from many merits, including unique morphology, abundant defects, and doping effect, Ni‐Fe‐K0.23MnO2 CNFs‐300 shows the best electrocatalytic performances among currently reported Mn oxide‐based electrocatalysts. This catalyst affords low overpotentials of 270 (320) mV at 10 (100) mA cm?2 for OER with a small Tafel slope of 42.3 mV dec?1, while requiring overpotentials of 116 and 243 mV to attain 10 and 100 mA cm?2 for HER respectively. Moreover, Ni‐Fe‐K0.23MnO2 CNFs‐300 applied to overall water splitting exhibits a low cell voltage of 1.62 V at 10 mA cm?2 and excellent durability, even superior to the Pt/C||IrO2 cell at large current density. Density functional theory calculations further confirm that doping Ni and Fe into the crystal lattice of δ‐MnO2 can not only reinforce the conductivity but also reduces the adsorption free‐energy barriers on the active sites during OER and HER.  相似文献   

20.
Here, ferrocene(Fc)‐incorporated cobalt sulfide (CoxSy) nanostructures directly grown on carbon nanotube (CNT) or carbon fiber (CF) networks for electrochemical oxygen evolution reaction (OER) using a facile one‐step solvothermal method are reported. The strong synergistic interaction between Fc‐CoxSy nanostructures and electrically conductive CNTs results in the superior electrocatalytic activity with a very small overpotential of ≈304 mV at 10 mA cm?2 and a low Tafel slope of 54.2 mV dec?1 in 1 m KOH electrolyte. Furthermore, the Fc‐incorporated CoxSy (FCoS) nanostructures are directly grown on the acid pretreated carbon fiber (ACF), and the resulting fabricated electrode delivers excellent OER performance with a low overpotential of ≈315 mV at 10 mA cm?2. Such superior OER catalytic activity can be attributed to 3D Fc‐CoxSy nanoarchitectures that consist of a high concentration of vertical nanosheets with uniform distribution of nanoparticles that afford a large number of active surface areas and edge sites. Besides, the tight contact interface between ACF substrate and Fc‐CoxSy nanostructures could effectively facilitate the electron transfer rate in the OER. This study provides valuable insights for the rational design of energy storage and conversion materials by the incorporation of other transition metal into metal sulfide/oxide nanostructures utilizing metallocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号