首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The promising and versatile applications of low dimensional materials are largely due to their surface properties, which along with their underlying electronic structures have been well studied. However, these materials may not be directly useful for applications requiring properties other than their natal ones. In recent years, strain has been shown to be an additionally useful handle to tune the physical and chemical properties of materials by changing their geometric and electronic structures. The strategies for producing strain are summarized. Then, the electronic structure of quasi‐two dimensional layered non‐metallic materials (e.g., graphene, MX2, BP, Ge nanosheets) under strain are discussed. Later, the strain effects on catalytic properties of metal‐catalyst loaded with strain are focused on. Both experimental and computational perspectives for dealing with strained systems are covered. Finally, an outlook on engineering surface properties utilizing strain is provided.  相似文献   

2.
Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4‐Butanediamine (BEA)‐based low‐dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single‐crystal X‐ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA2+) and monoammonium (MA+) cations in the interlayer space (B‐ACI) with the formula (BEA)0.5MAn PbnI3n+1. Compared to the typical LDRP counterparts, these B‐ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B‐ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier‐free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA)0.5MA3Pb3I10 and 17.39% for (BEA)0.5Cs0.15(FA0.83MA0.17)2.85Pb3(I0.83Br0.17)10 without hysteresis. Furthermore, the triple cations B‐ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h.  相似文献   

3.
The low‐dimensional halide perovskites have received enormous attention due to their unique photovoltaic and optoelectronic performances. Periodic spacers are used to inhibit the growth of 3D perovskite and fabricate a 2D counterpart with layered structure, mostly based on organic/inorganic cations. Herein, by introducing organic anions (e.g., pentanedioic acid (PDA) and hexanedioic acid (HDA) simultaneously), leaf‐shaped (Cs3Pb2Br5)2(PDA–HDA) microplates with low‐dimensional structure are synthesized. They also exhibit significant photoluminescence (PL) centered at 540 nm with a narrow emission peak. The synthesis of single crystals of Pb(PDA) and Pb(HDA) allows to further clarify the crystal structure of (Cs3Pb2Br5)2(PDA–HDA) perovskite and its structural evolution mechanism. Moreover, the cooperative introduction of dicarboxylic acid pairs with appropriate lengths is thermodynamically favored for the low‐dimensional perovskite crystallization. The temperature‐dependent PL indicates a V‐shaped Stokes shift with elevated temperature that could be associated with the localization of excitons in the inorganic layers between organic dicarboxylic acid molecules. This work demonstrates low‐dimensional halide perovskite with anionic spacers, which also opens up a new approach to the growth of low‐dimensional organic–inorganic hybrid perovskite crystals.  相似文献   

4.
Many of the recent advances in enhancing the thermoelectric figure of merit are linked to nanoscale phenomena found both in bulk samples containing nanoscale constituents and in nanoscale samples themselves. Prior theoretical and experimental proof‐of‐principle studies on quantum‐well superlattice and quantum‐wire samples have now evolved into studies on bulk samples containing nanostructured constituents prepared by chemical or physical approaches. In this Review, nanostructural composites are shown to exhibit nanostructures and properties that show promise for thermoelectric applications, thus bringing together low‐dimensional and bulk materials for thermoelectric applications. Particular emphasis is given in this Review to the ability to achieve 1) a simultaneous increase in the power factor and a decrease in the thermal conductivity in the same nanocomposite sample and for transport in the same direction and 2) lower values of the thermal conductivity in these nanocomposites as compared to alloy samples of the same chemical composition. The outlook for future research directions for nanocomposite thermoelectric materials is also discussed.  相似文献   

5.
6.
Topological crystalline insulators (TCIs) are recently discovered topological phase with robust surface states residing on high‐symmetry crystal surfaces. Different from conventional topological insulators (TIs), protection of surface states on TCIs comes from point‐group symmetry instead of time‐reversal symmetry in TIs. The distinct properties of TCIs make them promising candidates for the use in novel spintronics, low‐dissipation quantum computation, tunable pressure sensor, mid‐infrared detector, and thermoelectric conversion. However, similar to the situation in TIs, the surface states are always suppressed by bulk carriers, impeding the exploitation of topology‐induced quantum phenomenon. One effective way to solve this problem is to grow low‐dimensional TCIs which possess large surface‐to‐volume ratio, and thus profoundly increase the carrier contribution from topological surface states. Indeed, through persistent effort, researchers have obtained unique quantum transport phenomenon, originating from topological surface states, based on controllable growth of low‐dimensional TCIs. This article gives a comprehensive review on the recent progress of controllable synthesis and topological surface transport of low‐dimensional TCIs. The possible future direction about low‐dimensional TCIs is also briefly discussed at the end of this paper.  相似文献   

7.
All‐inorganic CsPbIBr2 perovskite has recently received growing attention due to its balanced band gap and excellent environmental stability. However, the requirement of high‐temperature processing limits its application in flexible devices. Herein, a low‐temperature seed‐assisted growth (SAG) method for high‐quality CsPbIBr2 perovskite films through reducing the crystallization temperature by introducing methylammonium halides (MAX, X = I, Br, Cl) is demonstrated. The mechanism is attributed to MA cation based perovskite seeds, which act as nuclei lowering the formation energy of CsPbIBr2 during the annealing treatment. It is found that methylammonium bromide treated perovskite (Pvsk‐Br) film fabricated at low temperature (150 °C) shows micrometer‐sized grains and superior charge dynamic properties, delivering a device with an efficiency of 10.47%. Furthermore, an efficiency of 11.1% is achieved for a device based on high‐temperature (250 °C) processed Pvsk‐Br film via the SAG method, which presents the highest reported efficiency for inorganic CsPbIBr2 solar cells thus far.  相似文献   

8.
The detection of defect‐induced magnetic order in single low‐dimensional oxide structures is in general difficult because of the relatively small yield of magnetically ordered regions. In this work, the effect of an external magnetic field on the transient photocurrent measured after light irradiation on different ZnO samples at room temperature is studied. It has been found that a magnetic field produces a change in the relaxation rate of the transient photocurrent only in magnetically ordered ZnO samples. This rate can decrease or increase with field, depending on whether the magnetically ordered region is in the bulk or only at the surface of the ZnO sample. The phenomenon reported here is of importance for the development of magneto‐optical low‐dimensional oxides devices and provides a new guideline for the detection of magnetic order in low‐dimensional magnetic semiconductors.  相似文献   

9.
Halide perovskites have high light absorption coefficients, long charge carrier diffusion lengths, intense photoluminescence, and slow rates of non‐radiative charge recombination. Thus, they are attractive photoactive materials for developing high‐performance optoelectronic devices. These devices are also cheap and easy to be fabricated. To realize the optimal performances of halide perovskite‐based optoelectronic devices (HPODs), perovskite photoactive layers should work effectively with other functional materials such as electrodes, interfacial layers and encapsulating films. Conventional two‐dimensional (2D) materials are promising candidates for this purpose because of their unique structures and/or interesting optoelectronic properties. Here, we comprehensively summarize the recent advancements in the applications of conventional 2D materials for halide perovskite‐based photodetectors, solar cells and light‐emitting diodes. The examples of these 2D materials are graphene and its derivatives, mono‐ and few‐layer transition metal dichalcogenides (TMDs), graphdiyne and metal nanosheets, etc. The research related to 2D nanostructured perovskites and 2D Ruddlesden–Popper perovskites as efficient and stable photoactive layers is also outlined. The syntheses, functions and working mechanisms of relevant 2D materials are introduced, and the challenges to achieving practical applications of HPODs using 2D materials are also discussed.  相似文献   

10.
2D crystals are emerging new materials in multidisciplinary fields including condensed state physics, electronics, energy, environmental engineering, and biomedicine. To employ 2D crystals for practical applications, these nanoscale crystals need to be processed into macroscale materials, such as suspensions, fibers, films, and 3D macrostructures. Among these macromaterials, fibers are flexible, knittable, and easy to use, which can fully reflect the advantages of the structure and properties of 2D crystals. Therefore, the fabrication and application of 2D crystal–based fibers is of great importance for expanding the impact of 2D crystals. In this Review, 2D crystals that are successfully prepared are overviewed based on their composition of elements. Subsequently, methods for preparing 2D crystals, 2D crystals dispersions, and 2D crystal–based fibers are systematically introduced. Then, the applications of 2D crystal–based fibers, such as flexible electronic devices, high‐efficiency catalysis, and adsorption, are also discussed. Finally, the status‐of‐quo, perspectives, and future challenges of 2D crystal–based fibers are summarized. This Review provides directions and guidelines for developing new 2D crystal–based fibers and exploring their potentials in the fields of smart wearable devices.  相似文献   

11.
The fabrication of multidimensional organometallic halide perovskite via a low‐pressure vapor‐assisted solution process is demonstrated for the first time. Phenyl ethyl‐ammonium iodide (PEAI)‐doped lead iodide (PbI2) is first spin‐coated onto the substrate and subsequently reacts with methyl‐ammonium iodide (MAI) vapor in a low‐pressure heating oven. The doping ratio of PEAI in MAI‐vapor‐treated perovskite has significant impact on the crystalline structure, surface morphology, grain size, UV–vis absorption and photoluminescence spectra, and the resultant device performance. Multiple photoluminescence spectra are observed in the perovskite film starting with high PEAI/PbI2 ratio, which suggests the coexistence of low‐dimensional perovskite (PEA2MAn?1PbnI3n+1) with various values of n after vapor reaction. The dimensionality of the as‐fabricated perovskite film reveals an evolution from 2D, hybrid 2D/3D to 3D structure when the doping level of PEAI/PbI2 ratio varies from 2 to 0. Scanning electron microscopy images and Kelvin probe force microscopy mapping show that the PEAI‐containing perovskite grain is presumably formed around the MAPbI3 perovskite grain to benefit MAPbI3 grain growth. The device employing perovskite with PEAI/PbI2 = 0.05 achieves a champion power conversion efficiency of 19.10% with an open‐circuit voltage of 1.08 V, a current density of 21.91 mA cm?2, and a remarkable fill factor of 80.36%.  相似文献   

12.
The discovery of graphene has sparked much interest in science and lead to the development of an ample variety of novel two‐dimensional (2D) materials. With increasing research interest in the field of 2D materials in recent years, the researchers have shifted their focus from the synthesis to the modification of 2D materials, emphasizing their electronic structures. In this review, the possibilities of altering the band structures are discussed via three different approches: (1) alloying 2D materials, so called ternary 2D materials, such as hexagonal carbonized boron nitrides (h‐BCN) and transition metal dichalcogenides (TMDs) ternary materials; (2) stacking 2D materials vertically, which results in 2D heterostructures named van der Waals (vdW) solids (using hexagonal boron nitrides (h‐BN)/graphene and TMDs stacking as examples), and growing lateral TMDs heterostructrues; (3) controlling the thickness of 2D materials, that is, the number of layers. The electronic properties of some 2D materials are very sensitive to the thickness, such as in TMDs and black phosphorus (BP). The variations of band structures and the resulting physical properties are systematically discussed.  相似文献   

13.
14.
Large‐scale high‐quality perovskite thin films are crucial to produce high‐performance perovskite solar cells. However, for perovskite films fabricated by solvent‐rich processes, film uniformity can be prevented by convection during thermal evaporation of the solvent. Here, a scalable low‐temperature soft‐cover deposition (LT‐SCD) method is presented, where the thermal convection‐induced defects in perovskite films are eliminated through a strategy of surface tension relaxation. Compact, homogeneous, and convection‐induced‐defects‐free perovskite films are obtained on an area of 12 cm2, which enables a power conversion efficiency (PCE) of 15.5% on a solar cell with an area of 5 cm2. This is the highest efficiency at this large cell area. A PCE of 15.3% is also obtained on a flexible perovskite solar cell deposited on the polyethylene terephthalate substrate owing to the advantage of presented low‐temperature processing. Hence, the present LT‐SCD technology provides a new non‐spin‐coating route to the deposition of large‐area uniform perovskite films for both rigid and flexible perovskite devices.  相似文献   

15.
2D Ruddlesden–Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite‐based cells. Herein, 2D (CH3(CH2)3NH3)2(CH3NH3)n?1PbnI3n+1 perovskite cells with different numbers of [PbI6]4? sheets (n = 2–4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open‐circuit voltage (VOC) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C60 interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi‐Fermi level splitting matches the device VOC within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements.  相似文献   

16.
17.
18.
Tremendous efforts have been devoted to the synthesis and application of two‐dimensional (2D) nanomaterials due to their extraordinary and unique properties in electronics, photonics, catalysis, etc., upon exfoliation from their bulk counterparts. One of the greatest challenges that scientists are confronted with is how to produce large quantities of 2D nanomaterials of high quality in a commercially viable way. This review summarizes the state‐of‐the‐art of the production of 2D nanomaterials using liquid‐based direct exfoliation (LBE), a very promising and highly scalable wet approach for synthesizing high quality 2D nanomaterials in mild conditions. LBE is a collection of methods that directly exfoliates bulk layered materials into thin flakes of 2D nanomaterials in liquid media without any, or with a minimum degree of, chemical reactions, so as to maintain the high crystallinity of 2D nanomaterials. Different synthetic methods are categorized in the following, in which material characteristics including dispersion concentration, flake thickness, flake size and some applications are discussed in detail. At the end, we provide an overview of the advantages and disadvantages of such synthetic methods of LBE and propose future perspectives.  相似文献   

19.
Microporous membranes act as selective barriers and play an important role in industrial gas separation and water purification. The permeability of such membranes is inversely proportional to their thickness. Synthetic two‐dimensional materials (2DMs), with a thickness of one to a few atoms or monomer units are ideal candidates for developing separation membranes. Here, groundbreaking advances in the design, synthesis, processing, and application of 2DMs for gas and ion separations, as well as water desalination are presented. This report describes the syntheses, structures, and mechanical properties of 2DMs. The established methods for processing 2DMs into selective permeation membranes are also discussed and the separation mechanism and their performances addressed. Current challenges and emerging research directions, which need to be addressed for developing next‐generation separation membranes, are summarized.  相似文献   

20.
The creation of three‐dimensional (3D) structures from two‐dimensional (2D) nanomaterial building blocks enables novel chemical, mechanical or physical functionalities that cannot be realized with planar thin films or in bulk materials. Here, we review the use of emerging 2D materials to create complex out‐of‐plane surface topographies and 3D material architectures. We focus on recent approaches that yield periodic textures or patterns, and present four techniques as case studies: (i) wrinkling and crumpling of planar sheets, (ii) encapsulation by crumpled nanosheet shells, (iii) origami folding and kirigami cutting to create programmed curvature, and (iv) 3D printing of 2D material suspensions. Work to date in this field has primarily used graphene and graphene oxide as the 2D building blocks, and we consider how these unconventional approaches may be extended to alternative 2D materials and their heterostructures. Taken together, these emerging patterning and texturing techniques represent an intriguing alternative to conventional materials synthesis and processing methods, and are expected to contribute to the development of new composites, stretchable electronics, energy storage devices, chemical barriers, and biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号