首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.  相似文献   

2.
The Li‐CO2 battery is an emerging green energy technology coupling CO2 capture and conversion. The main drawback of present Li‐CO2 batteries is serious polarization and poor cycling caused by random deposition of lithium ions and big insulated Li2CO3 formation on the cathode during discharge. Herein, covalent organic frameworks (COF) are identified as the porous catalyst in the cathode of Li‐CO2 batteries for the first time. Graphene@COF is fabricated, graphene with thin and uniform imine COF loading, to enrich and confine CO2 in the nanospaces of micropores. The discharge voltage is raised by higher local CO2 concentration, which is predicted by the Nernst equation and realized by CO2 nanoenrichment. Moreover, uniform lithium ion deposition directed by the graphene@COF nanoconfined CO2 can produce smaller Li2CO3 particles, leading to easier Li2CO3 decomposition and thus lower charge voltage. The graphene@COF cathode with 47.5% carbon content achieves a discharge capacity of 27833 mAh g?1 at 75 mA g?1, while retaining a low charge potential of 3.5 V at 0.5 A g?1 for 56 cycles.  相似文献   

3.
4.
Covalent organic frameworks (COF) or metal–organic frameworks have attracted significant attention for various applications due to their intriguing tunable micro/mesopores and composition/functionality control. Herein, a coordination‐induced interlinked hybrid of imine‐based covalent organic frameworks and Mn‐based metal–organic frameworks (COF/Mn‐MOF) based on the Mn? N bond is reported. The effective molecular‐level coordination‐induced compositing of COF and MOF endows the hybrid with unique flower‐like microsphere morphology and superior lithium‐storage performances that originate from activated Mn centers and the aromatic benzene ring. In addition, hollow or core–shell MnS trapped in N and S codoped carbon (MnS@NS‐C‐g and MnS@NS‐C‐l) are also derived from the COF/Mn‐MOF hybrid and they exhibit good lithium‐storage properties. The design strategy of COF–MOF hybrid can shed light on the promising hybridization on porous organic framework composites with molecular‐level structural adjustment, nano/microsized morphology design, and property optimization.  相似文献   

5.
Li–CO2 batteries represent an attractive solution for electrochemical energy storage by utilizing atmospheric CO2 as the energy carrier. However, their practical viability critically depends on the development of efficient and low‐cost cathode catalysts for the reversible formation and decomposition of Li2CO3. Here, the great potential of a structurally engineered polymer is demonstrated as the cathode catalyst for rechargeable Li–CO2 batteries. Conjugated cobalt polyphthalocyanine is prepared via a facile microwave heating method. Due to the crosslinked network, it is intrinsically elastic and has improved chemical, physical, and mechanical stability. Electrochemical measurements show that cobalt polyphthalocyanine facilitates the reversible formation and decomposition of Li2CO3, and therefore enables high‐performance Li–CO2 batteries with large areal capacity and impressive cycling performance. In addition, the elastic and reprocessable property of the polymeric catalyst renders it possible to fabricate flexible batteries.  相似文献   

6.
Carbon materials derived from metal–organic frameworks (MOFs) have attracted much attention in the field of scientific research in recent years because of their advantages of excellent electron conductivity, high porosity, and diverse applications. Tremendous efforts are devoted to improving their chemical and physical properties, including optimizing the morphology and structure of the carbon materials, compositing them with other materials, and so on. Here, many kinds of carbon materials derived from metal–organic frameworks are introduced with a particular focus on their promising applications in batteries (lithium‐ion batteries, lithium–sulfur batteries, and sodium‐ion batteries), supercapacitors (metal oxide/carbon and metal sulfide/carbon), electrocatalytic reactions (oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction), water treatment (MOF‐derived carbon and other techniques), and other possible fields. To close, some existing problem and corresponding possible solutions are proposed based on academic knowledge from the reported literature, along with a great deal of experimental experience.  相似文献   

7.
8.
9.
Rechargeable Li–CO2 batteries have attracted worldwide attention due to the capability of CO2 capture and superhigh energy density. However, they still suffer from poor cycling performance and huge overpotential. Thus, it is essential to explore highly efficient catalysts to improve the electrochemical performance of Li–CO2 batteries. Here, phytic acid (PA)‐cross‐linked ruthenium complexes and melamine are used as precursors to design and synthesize RuP2 nanoparticles highly dispersed on N, P dual‐doped carbon films (RuP2‐NPCFs), and the obtained RuP2‐NPCF is further applied as the catalytic cathode for Li–CO2 batteries. RuP2 nanoparticles that are uniformly deposited on the surface of NPCF show enhanced catalytic activity to decompose Li2CO3 at low charge overpotential. In addition, the NPCF its with porous structure in RuP2‐NPCF provides superior electrical conductivity, high electrochemical stability, and enough ion/electron and space for the reversible reaction in Li–CO2 batteries. Hence, the RuP2‐NPCF cathode delivers a superior reversible discharge capacity of 11951 mAh g?1, and achieves excellent cyclability for more than 200 cycles with low overpotentials (<1.3 V) at the fixed capacity of 1000 mAh g?1. This work paves a new way to design more effective catalysts for Li–CO2 batteries.  相似文献   

10.
Motile metal?organic frameworks (MOFs) are potential candidates to serve as small‐scale robotic platforms for applications in environmental remediation, targeted drug delivery, or nanosurgery. Here, magnetic helical microstructures coated with a kind of zinc‐based MOF, zeolitic imidazole framework‐8 (ZIF‐8), with biocompatibility characteristics and pH‐responsive features, are successfully fabricated. Moreover, it is shown that this highly integrated multifunctional device can swim along predesigned tracks under the control of weak rotational magnetic fields. The proposed systems can achieve single‐cell targeting in a cell culture media and a controlled delivery of cargo payloads inside a complex microfluidic channel network. This new approach toward the fabrication of integrated multifunctional systems will open new avenues in soft microrobotics beyond current applications.  相似文献   

11.
Modern sustainability challenges in recent years have warranted the development of new energy storage technologies. Practical realization of the lithium–O2 battery holds great promise for revolutionizing energy storage as it holds the highest theoretical specific energy of any rechargeable battery yet discovered. However, the complete realization of Li–O2 batteries necessitates ambient air operations, which presents quite a few challenges, as carbon dioxide (CO2) and water (H2O) contaminants introduce unwanted byproducts from side reactions that greatly affect battery performance. Although current research has thoroughly explored the beneficial incorporation of CO2, much mystery remains over the inconsistent effects of H2O. The presence of water in both the cathode and electrolyte has been observed to alter reaction mechanisms differently, resulting in a diverse range of effects on voltage, capacity, and cyclability. Moreover, recent preliminary research with catalysts and redox mediators has attempted to utilize the presence of water to the battery's benefit. Here, the key mechanism discrepancies of water‐afflicted Li–O2 batteries are presented, concluding with a perspective on future research directions for nonaqueous Li–O2 batteries.  相似文献   

12.
Silicene has recently received increasing interest due to its unique properties. However, the synthesis of silicene remains challenging, which limits its wide applications. In this work, a top‐down lithiation and delithiation process is developed to prepare few layer silicene‐like nanosheets from ball‐milled silicon nanopowders. It is found that delithiation solvent plays a critical role in the structure evolution of the final products. The use of isopropyl alcohol renders 2D silicene‐like products 30–100 nm in length and ≈2.4 nm in thickness. The electrochemical characterization analysis suggests that the product shows high performance for rechargeable Li–O2 batteries with 73% energy efficiency and high stability. The top‐down synthesis strategy proposed in this work not only provides a new solution to the challenging preparation issue of few layer silicene but also demonstrates the feasibility of producing 2D materials from nonlayered starting structures.  相似文献   

13.
14.
2D nanocarbon‐based materials with controllable pore structures and hydrophilic surface show great potential in electrochemical energy storage systems including lithium sulfur (Li–S) batteries. This paper reports a thermal exfoliation of metal–organic framework crystals with intrinsic 2D structure into multilayer graphene stacks. This family of nanocarbon stacks is composed of well‐preserved 2D sheets with highly accessible interlayer macropores, narrowly distributed 7 Å micropores, and ever most polar pore walls. The surface polarity is quantified both by its ultrahigh water vapor uptake of 14.3 mmol g?1 at low relative pressure of P /P 0 = 0.4 and ultrafast water wetting capability in less than 10.0 s. Based on the structural merits, this series hydrophilic multilayer graphene stack is showcased as suitable model cathode host for unveiling the challenging surface chemistry issue in Li–S batteries.  相似文献   

15.
The Li–CO2 battery is a promising energy storage device for wearable electronics due to its long discharge plateau, high energy density, and environmental friendliness. However, its utilization is largely hindered by poor cyclability and mechanical rigidity due to the lack of a flexible and durable catalyst electrode. Herein, flexible fiber‐shaped Li–CO2 batteries with ultralong cycle‐life, high rate capability, and large specific capacity are fabricated, employing bamboo‐like N‐doped carbon nanotube fiber (B‐NCNT) as flexible, durable metal‐free catalysts for both CO2 reduction and evolution reactions. Benefiting from high N‐doping with abundant pyridinic groups, rich defects, and active sites of the periodic bamboo‐like nodes, the fabricated Li–CO2 battery shows outstanding electrochemical performance with high full‐discharge capacity of 23 328 mAh g?1, high rate capability with a low potential gap up to 1.96 V at a current density of 1000 mA g?1, stability over 360 cycles, and good flexibility. Meanwhile, the bifunctional B‐NCNT is used as the counter electrode for a fiber‐shaped dye‐sensitized solar cell to fabricate a self‐powered fiber‐shaped Li–CO2 battery with overall photochemical–electric energy conversion efficiency of up to 4.6%. Along with a stable voltage output, this design demonstrates great adaptability and application potentiality in wearable electronics with a breath monitor as an example.  相似文献   

16.
The excessive emission of CO2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO2 and its utilization in metal–CO2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO2 fixation/utilization and energy storage/release. Here, rechargeable Al–CO2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO2 ? 2Al2(CO3)3 + 3C, by which CO2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO2 fixation/utilization strategy with stable Al.  相似文献   

17.
18.
Solid‐state batteries (SSBs) are promising for safer energy storage, but their active loading and energy density have been limited by large interfacial impedance caused by the poor Li+ transport kinetics between the solid‐state electrolyte and the electrode materials. To address the interfacial issue and achieve higher energy density, herein, a novel solid‐like electrolyte (SLE) based on ionic‐liquid‐impregnated metal–organic framework nanocrystals (Li‐IL@MOF) is reported, which demonstrates excellent electrochemical properties, including a high room‐temperature ionic conductivity of 3.0 × 10‐4 S cm‐1, an improved Li+ transference number of 0.36, and good compatibilities against both Li metal and active electrodes with low interfacial resistances. The Li‐IL@MOF SLE is further integrated into a rechargeable Li|LiFePO4 SSB with an unprecedented active loading of 25 mg cm‐2, and the battery exhibits remarkable performance over a wide temperature range from ?20 up to 150 °C. Besides the intrinsically high ionic conductivity of Li‐IL@MOF, the unique interfacial contact between the SLE and the active electrodes owing to an interfacial wettability effect of the nanoconfined Li‐IL guests, which creates an effective 3D Li+ conductive network throughout the whole battery, is considered to be the key factor for the excellent performance of the SSB.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号