首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal conductance across the one-dimensional (1D) interface between a MoS2 monolayer and Au electrode (edge-contact) has been investigated using molecular dynamics simulations.Although the thermal conductivity of monolayer MoS2 is 2-3 orders of magnitude lower than that of graphene,the covalent bonds formed at the interface enable interfacial thermal conductance (ITC) that is comparable to that of a graphene-metal interface.Each covalent bond at the interface serves as an independent channel for thermal conduction,allowing ITC to be tuned linearly by changing the interfacial bond density (controlling S vacandes).In addition,different Au surfaces form different bonding configurations,causing large ITC variations.Interestingly,the S vacancies in the central region of MoS2 only slightly affect the ITC,which can be explained by a mismatch of the phonon vibration spectra.Further,at room temperature,ITC is primarily dominated by phonon transport,and electron-phonon coupling plays a negligible role.These results not only shed light on the phonon transport mechanisms across 1D metal-MoS2 interfaces,but also provide guidelines for the design and optimization of such interfaces for thermal management in MoS2-based electronicdevices.  相似文献   

2.
Transition metal dichalcogenides (TMDs) are a group of layered 2D semiconductors that have shown many intriguing electrical and optical properties. However, the thermal transport properties in TMDs are not well understood due to the challenges in characterizing anisotropic thermal conductivity. Here, a variable‐spot‐size time‐domain thermoreflectance approach is developed to simultaneously measure both the in‐plane and the through‐plane thermal conductivity of four kinds of layered TMDs (MoS2, WS2, MoSe2, and WSe2) over a wide temperature range, 80–300 K. Interestingly, it is found that both the through‐plane thermal conductivity and the Al/TMD interface conductance depend on the modulation frequency of the pump beam for all these four compounds. The frequency‐dependent thermal properties are attributed to the nonequilibrium thermal resistance between the different groups of phonons in the substrate. A two‐channel thermal model is used to analyze the nonequilibrium phonon transport and to derive the intrinsic thermal conductivity at the thermal equilibrium limit. The measurements of the thermal conductivities of bulk TMDs serve as an important benchmark for understanding the thermal conductivity of single‐ and few‐layer TMDs.  相似文献   

3.
The phonon contribution to the thermal boundary conductance (TBC) at metal–metal interfaces is difficult to study experimentally, and it is typically considered negligible. In this study, molecular dynamics simulations (MDS), employing an embedded atom method (EAM) potential, are performed to study the phonon contribution to thermal transport across an Al–Cu interface. The embedded atom method provides a realistic model of atomic behavior in metals, while suppressing the effect on conduction electrons. In this way, measurements on the phonon system may be observed that would otherwise be dominated by the electron contribution in experimental methods. The relative phonon contribution to the TBC is calculated by comparing EAM results to previous experimental results which include both electron and phonon contributions. It is seen from the data that the relative phonon contribution increases with decreasing temperature, possibly accounting for more than half the overall TBC at temperatures below 100 K. These results suggest that neglect of interfacial phonon transport may not be a valid assumption at low temperatures, and may have implications in the future development of TBC models for metal interfaces.  相似文献   

4.
Graphene-based devices have garnered tremendous attention due to the unique physical properties arising from this purely two-dimensional carbon sheet leading to tremendous efficiency in the transport of thermal carriers (i.e., phonons). However, it is necessary for this two-dimensional material to be able to efficiently transport heat into the surrounding 3D device architecture in order to fully capitalize on its intrinsic transport capabilities. Therefore, the thermal boundary conductance at graphene interfaces is a critical parameter in the realization of graphene electronics and thermal solutions. In this work, we examine the role of chemical functionalization on the thermal boundary conductance across metal/graphene interfaces. Specifically, we metalize graphene that has been plasma functionalized and then measure the thermal boundary conductance at Al/graphene/SiO(2) contacts with time domain thermoreflectance. The addition of adsorbates to the graphene surfaces are shown to influence the cross plane thermal conductance; this behavior is attributed to changes in the bonding between the metal and the graphene, as both the phonon flux and the vibrational mismatch between the materials are each subject to the interfacial bond strength. These results demonstrate plasma-based functionalization of graphene surfaces is a viable approach to manipulate the thermal boundary conductance.  相似文献   

5.
Molecular vibrations play a critical role in the charge transport properties of weakly van der Waals bonded organic semiconductors. To understand which specific phonon modes contribute most strongly to the electron–phonon coupling and ensuing thermal energetic disorder in some of the most widely studied high‐mobility molecular semiconductors, state‐of‐the‐art quantum mechanical simulations of the vibrational modes and the ensuing electron–phonon coupling constants are combined with experimental measurements of the low‐frequency vibrations using inelastic neutron scattering and terahertz time‐domain spectroscopy. In this way, the long‐axis sliding motion is identified as a “killer” phonon mode, which in some molecules contributes more than 80% to the total thermal disorder. Based on this insight, a way to rationalize mobility trends between different materials and derive important molecular design guidelines for new high‐mobility molecular semiconductors is suggested.  相似文献   

6.
We report the first experimental results on the temperature dependent in-plane and cross-plane thermal conductivities of a symmetrically strained Si/Ge superlattice and a Ge quantum-dot superlattice measured by the two-wire 3 omega method. The measured thermal conductivity values are highly anisotropic and are significantly reduced compared to the bulk thermal conductivity of the structures. The results can be explained by using heat transport models based on the Boltzmann transport equation with partially diffusive scattering of the phonons at the superlattice interfaces.  相似文献   

7.
Thermal transport in polymer nanocomposites becomes dependent on the interfacial thermal conductance due to the ultra-high density of the internal interfaces when the polymer and filler domains are intimately mixed at the nanoscale. However, there is a lack of experimental measurements that can link the thermal conductance across the interfaces to the chemistry and bonding between the polymer molecules and the glass surface. Characterizing the thermal properties of amorphous composites are a particular challenge as their low intrinsic thermal conductivity leads to poor measurement sensitivity of the interfacial thermal conductance. To address this issue here, polymers are confined in porous organosilicates with high interfacial densities, stable composite structure, and varying surface chemistries. The thermal conductivities and fracture energies of the composites are measured with frequency dependent time-domain thermoreflectance (TDTR) and thin-film fracture testing, respectively. Effective medium theory (EMT) along with finite element analysis (FEA) is then used to uniquely extract the thermal boundary conductance (TBC) from the measured thermal conductivity of the composites. Changes in TBC are then linked to the hydrogen bonding between the polymer and organosilicate as quantified by Fourier-transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy. This platform for analysis is a new paradigm in the experimental investigation of heat flow across constituent domains.  相似文献   

8.
Composites incorporating various vol.% (0.0, 1.1, 6.4, and 10.4) of multiwall carbon nanotubes (MWCNTs) in alumina were consolidated by the spark plasma sintering. Their thermal transport properties were investigated over the temperature range 300–800 K as a function of nanotube contents. It was observed that the temperature-dependent effective thermal conductivity decreases with the addition of MWCNTs in alumina. This behavior was analyzed in terms of phonon mean free path, elastic modulus, average sound speed, and interface thermal resistance. Compared with 1/T behavior for pristine alumina, a subtle decrease in temperature dependence of the thermal conductivity of the composites with the addition of MWCNTs is observed, indicating the presence of extra phonon scattering mechanism beyond the intrinsic phonon–phonon scattering. Simulation of experimental results with theoretical model shows that the large interfacial thermal barrier between MWCNTs and alumina plays a dominant role in controlling thermal transport properties of the composites. In addition to dominant interface thermal resistance other secondary factors such as nanotube agglomeration, processing defects, porosity also contribute for low thermal conductivity at the higher volume fraction of MWCNTs in the composite.  相似文献   

9.
热填料的热膨胀系数和热导率是设计热管理和热防护复合材料的关键参考因素.六方氮化硼(h-BN)由于其独特的优点是最常用的热填料之一.但由于不同测试方法和测试样品的不一致性,其热膨胀系数和热导率的精确数值尚不清楚.本文分别用基于密度泛函理论的准谐近似方法和声子玻耳兹曼输运方程理论精确计算了h-BN沿层间和层内方向的热膨胀系...  相似文献   

10.
We have investigated the influence of the electron–phonon interaction on magnetoelectric properties and spin-related transport effects of a two dimensional electron gas in the presence of the spin–orbit couplings. We have employed a semiclassical method that has been extended to include the anisotropic effects of band structure in the presence of the spin–orbit couplings. We found that resistivity and anisotropic resistance (AR) can be controlled by Rashba spin–orbit coupling.  相似文献   

11.
Particles trapped at fluid interfaces experience long‐range interactions that determine their assembly behavior. Because particle interactions at fluid interfaces tend to be unusually strong, once particles organize themselves into a 2D assembly, it is challenging to induce changes in their microstructure. In this report, a new approach is presented to induce reversible order–disorder transitions (ODTs) in the 2D monolayer of colloidal particles trapped at a soft gel–fluid interface. Particles at the soft interface, consisting of a nonpolar superphase and a weakly gelled subphase, initially form a monolayer with a highly ordered structure. The structure of this monolayer can be dynamically varied by the addition or removal of the oil phase. Upon removing the oil via evaporation, the initially ordered particle monolayer undergoes ODT, driven by capillary attractions. The ordered monolayer can be recovered through disorder‐to‐order transition by simply adding oil atop the particle‐laden soft interface. The possibility to dynamically tune the interparticle interactions using soft interfaces can potentially enable control of the transport and mechanical properties of particle‐laden interfaces and provide model systems to study particle‐laden soft interfaces that are relevant to biological tissues or organs.  相似文献   

12.
Owing to the growing heat removal issue in modern electronic devices, electrically insulating polymer composites with high thermal conductivity have drawn much attention during the past decade. However, the conventional method to improve through‐plane thermal conductivity of these polymer composites usually yields an undesired value (below 3.0 Wm?1 K?1). Here, construction of a 3D phonon skeleton is reported composed of stacked boron nitride (BN) platelets reinforced with reduced graphene oxide (rGO) for epoxy composites by the combination of ice‐templated and infiltrating methods. At a low filler loading of 13.16 vol%, the resulting 3D BN‐rGO/epoxy composites exhibit an ultrahigh through‐plane thermal conductivity of 5.05 Wm?1 K?1 as the best thermal‐conduction performance reported so far for BN sheet‐based composites. Theoretical models qualitatively demonstrate that this enhancement results from the formation of phonon‐matching 3D BN‐rGO networks, leading to high rates of phonon transport. The strong potential application for thermal management has been demonstrated by the surface temperature variations of the composites with time during heating and cooling.  相似文献   

13.
2D Td‐WTe2 has attracted increasing attention due to its promising applications in spintronic, field‐effect chiral, and high‐efficiency thermoelectric devices. It is known that thermal conductivity plays a crucial role in condensed matter devices, especially in 2D systems where phonons, electrons, and magnons are highly confined and coupled. This work reports the first experimental evidence of in‐plane anisotropic thermal conductivities in suspended Td‐WTe2 samples of different thicknesses, and is also the first demonstration of such anisotropy in 2D transition metal dichalcogenides. The results reveal an obvious anisotropy in the thermal conductivities between the zigzag and armchair axes. The theoretical calculation implies that the in‐plane anisotropy is attributed to the different mean free paths along the two orientations. As thickness decreases, the phonon‐boundary scattering increases faster along the armchair direction, resulting in stronger anisotropy. The findings here are crucial for developing efficient thermal management schemes when engineering thermal‐related applications of a 2D system.  相似文献   

14.
High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure–property–processing–performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state‐of‐the‐art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge‐transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability–durability–sustainability considerations pivotal for facilitating laboratory to industry translation are presented.  相似文献   

15.
Heat dissipation is a major limitation of high-performance electronics. This is especially important in emerging nanoelectronic devices consisting of ultra-thin layers, heterostructures, and interfaces, where enhancement in thermal transport is highly desired. Here, ultra-high interfacial thermal conductance in encapsulated van der Waals (vdW) heterostructures with single-layer transition metal dichalcogenides MX2 (MoS2, WSe2, WS2) sandwiched between two hexagonal boron nitride (hBN) layers is reported. Through Raman spectroscopic measurements of suspended and substrate-supported hBN/MX2/hBN heterostructures with varying laser power and temperature, the out-of-plane interfacial thermal conductance in the vertical stack is calibrated. The measured interfacial thermal conductance between MX2 and hBN reaches 74 ± 25 MW m−2 K−1, which is at least ten times higher than the interfacial thermal conductance of MX2 in non-encapsulation structures. Molecular dynamics (MD) calculations verify and explain the experimental results, suggesting a full encapsulation by hBN layers is accounting for the high interfacial conductance. This ultra-high interfacial thermal conductance is attributed to the double heat transfer pathways and the clean and tight vdW interface between two crystalline 2D materials. The findings in this study reveal new thermal transport mechanisms in hBN/MX2/hBN structures and shed light on building novel hBN-encapsulated nanoelectronic devices with enhanced thermal management.  相似文献   

16.
Engineered heterostructures create new functionality by integrating dissimilar materials. Combining different 2D crystals naturally produces two distinct classes of heterostructures, vertical van der Waals (vdW) stacks or 2D sheets bonded laterally by covalent line interfaces. When joining thicker layered crystals, the arising structural and topological conflicts can result in more complex geometries. Phase separation during one‐pot synthesis of layered tin chalcogenides spontaneously creates core–shell structures in which large orthorhombic SnS crystals are enclosed in a wrap‐around shell of trigonal SnS2, forcing the coexistence of parallel vdW layering along with unconventional, orthogonally layered core–shell interfaces. Measurements of the optoelectronic properties establish anisotropic carrier separation near type II core–shell interfaces and extended long‐wavelength light harvesting via spatially indirect interfacial absorption, making multifunctional layered core–shell structures attractive for energy‐conversion applications.  相似文献   

17.
Patel HA  Garde S  Keblinski P 《Nano letters》2005,5(11):2225-2231
Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water-organic liquid, water-surfactant, surfactant-organic liquid, is relatively high (in the range of 65-370 MW/m2 K) compared to that for solid-liquid interfaces ( approximately 10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid-liquid interfaces.  相似文献   

18.
With the ever-decreasing size of microelectronic devices, growing applications of superlattices, and development of nanotechnology, thermal resistances of interfaces are becoming increasingly central to thermal management. Although there has been much success in understanding thermal boundary conductance at low temperatures, the current models applied at temperatures more common in device operation are not adequate due to our current limited understanding of phonon transport channels. In this study, the scattering processes in Al and Pt films on Al2O3 substrates are examined by transient thermoreflectance testing at high temperatures. At high temperatures, traditional models predict the thermal boundary conductance to be relatively constant in these systems due to assumptions about phonon elastic scattering. Experiments, however, show an increase in the conductance indicating potential inelastic phonon processes.  相似文献   

19.
Vertically stacked van der Waals (vdW) heterostructures have been suggested as a robust platform for studying interfacial phenomena and related electric/optoelectronic devices. While the interlayer Coulomb interaction mediated by the vdW coupling has been extensively studied for carrier recombination processes in a diode transport, its correlation with the interlayer tunneling transport has not been elucidated. Here, a contrast is reported between tunneling and drift photocurrents tailored by the interlayer coupling strength in MoSe2/MoS2 hetero‐bilayers (HBs). The interfacial coupling modulated by thermal annealing is identified by the interlayer phonon coupling in Raman spectra and the emerging interlayer exciton peak in photoluminescence spectra. In strongly coupled HBs, positive photocurrents are observed owing to the inelastic band‐to‐band tunneling assisted by interlayer excitons that prevail over exciton recombinations. By contrast, weakly coupled HBs exhibit a negative photovoltaic diode behavior, manifested as a drift current without interlayer excitonic emissions. This study sheds light on tailoring the tunneling transport for numerous optoelectronic HB devices.  相似文献   

20.
Investigation of the thermal and electrical conductivities of poly(l-lactic acid) composites containing carbon fibers (CFs) of various sizes has revealed that the thermal conductivity depends largely on the length of the CFs in the composites and that the electrical conductivity depends largely on the aspect ratio of the CFs. These different dependencies are due to the effect of the number of interfaces between the CFs in a percolation network formed in the composites, where electron transport is enhanced but phonon thermal conduction is limited by phonon scattering at the interfaces between the CFs. The anisotropy of each conductivity is also influenced by the length of the CFs, which could determine the alignment of the CFs in the molded composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号