首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal phosphides and heteroatom‐doped carbons have been regarded as promising candidates as bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). However, both have suffered from stability issues during repeated ORR and OER operations in zinc–air batteries (ZABs). Herein, this study reports a versatile cobalt‐based hybrid catalyst with a 1D structure by integrating the metal‐organic framework‐derived conversion approach and an in situ crosslinking method. Among them, the 1D hybrid catalyst composed of ultrasmall cobalt phosphide nanoparticles supported by nitrogen‐, sulfur‐, phosphorus‐doped carbon matrix shows remarkable bifunctional activity close to that of the benchmark precious‐metal catalysts along with an excellent durability in the full potential range covering both the OER and ORR. The overall overpotential of the rechargeable ZABs can be greatly reduced with this bifunctional hybrid catalyst as an air‐electrode, and the cycling stability outperforms the commercial Pt/C catalyst. It is revealed that the cobalt phosphide nanoparticles are in situ converted to cobalt oxide under the accelerated conditions during OER (and/or ORR) of the ZABs and reduces the anodic current applied to the carbon. This contributes to the stability of the carbon material and in maintaining the high initial catalytic properties of the hybrid catalyst.  相似文献   

2.
Developing a scalable approach to construct efficient and multifunctional electrodes for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) is an urgent need for overall water splitting and zinc–air batteries. In this work, a freestanding 3D heterostructure film is synthesized from a Ni-centered metal−organic framework (MOF)/graphene oxide. During the pyrolysis process, 1D carbon nanotubes formed from the MOF link with the 2D reduced graphene oxide sheets to stitch the 3D freestanding film. The results of the experiments and theoretical calculations show that the synergistic effect of the N-doped carbon shell and Ni nanoparticles leads to an optimized film with excellent electrocatalytic activity. Low overpotentials of 95 and 260 mV are merely needed for HER and OER, respectively, to reach a current density of 10 mA cm−2. In addition, a high half-wave potential of 0.875 V is obtained for the ORR, which is comparable to that of Pt/RuO2 and ranks among the top of non-noble-metal catalysts. The use of an “all-in-one” film as the electrode leads to excellent performance of the homemade water electrolyzer and zinc–air battery, indicating the potential of the film for practical applications.  相似文献   

3.
The development of rechargeable metal–air batteries and water electrolyzers are highly constrained by electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). However, the construction of efficient trifunctional electrocatalysts for ORR/OER/HER are highly desirable yet challenging. Herein, hollow carbon nanotubes integrated single cobalt atoms with Co9S8 nanoparticles (CoSA + Co9S8/HCNT) are fabricated by a straightforward in situ self‐sacrificing strategy. The structure of the CoSA + Co9S8/HCNT are verified by X‐ray absorption spectroscopy and aberration‐corrected scanning transmission electron microscopy. Theoretical calculations and experimental results embrace the synergistic effects between Co9S8 nanoparticles and single cobalt atoms through optimizing the electronic configuration of the CoN4 active sites to lower the reaction barrier and facilitating the ORR, OER, and HER simultaneously. Consequently, rechargeable liquid and all‐solid‐state flexible Zn–air batteries based on CoSA + Co9S8/HCNT exhibit remarkable stability and excellent power density of 177.33 and 51.85 mW cm?2, respectively, better than Pt/C + RuO2 counterparts. Moreover, the as‐fabricated Zn–air batteries can drive an overall water splitting device assembled with CoSA + Co9S8/HCNT and achieve a current density of 10 mA cm?2 at a low voltage of 1.59 V, also superior to Pt/C + RuO2. Therefore, this work presents a promising approach to an efficient trifunctional electrocatalyst toward practical applications.  相似文献   

4.
Metal–organic frameworks (MOFs) and MOF‐derived materials have recently attracted considerable interest as alternatives to noble‐metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N‐C materials (C‐MOF‐C2‐T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C‐MOF‐C2‐900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N‐doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO2, respectively. Primary Zn–air batteries based on C‐MOF‐900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h gZn–1 under 10 mA cm–2. Rechargeable Zn–air batteries based on C‐MOF‐C2‐900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm–2), along with an excellent cycling stability with no increase in polarization even after 120 h – outperform their counterparts based on noble‐metal‐based air electrodes. The resultant rechargeable Zn–air batteries are used to efficiently power electrochemical water‐splitting systems, demonstrating promising potential as integrated green energy systems for practical applications.  相似文献   

5.
To meet the practical demand of overall water splitting and regenerative metal–air batteries, highly efficient, low-cost, and durable electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are required to displace noble metal catalysts. In this work, a facile solid-state synthesis strategy is developed to construct the interfacial engineering of W2N/WC heterostructures, in which abundant interfaces are formed. Under high temperature (800 °C), volatile CNx species from dicyanodiamide are trapped by WO3 nanorods, followed by simultaneous nitridation and carbonization, to form W2N/WC heterostructure catalysts. The resultant W2N/WC heterostructure catalysts exhibit an efficient and stable electrocatalytic performance toward the ORR, OER, and HER, including a half-wave potential of 0.81 V (ORR) and a low overpotential at 10 mA cm−2 for the OER (320 mV) and HER (148.5 mV). Furthermore, a W2N/WC-based Zn–air battery shows outstanding high power density (172 mW cm−2). Density functional theory and X-ray absorption fine structure analysis computations reveal that W2N/WC interfaces synergistically facilitate transport and separation of charge, thus accelerating the electrochemical ORR, OER, and HER. This work paves a novel avenue for constructing efficient and low-cost electrocatalysts for electrochemical energy devices.  相似文献   

6.
Portable water splitting devices driven by rechargeable metal–air batteries or solar cells are promising, however, their scalable usages are still hindered by lack of suitable multifunctional electrocatalysts. Here, a highly efficient multifunctional electrocatalyst is demonstrated, i.e., 2D nanosheet array of Mo‐doped NiCo2O4/Co5.47N heterostructure deposited on nickel foam (Mo‐NiCo2O4/Co5.47N/NF). The successful doping of non‐3d high‐valence metal into a heterostructured nanosheet array, which is directly grown on a conductive substrate endows the resultant catalyst with balanced electronic structure, highly exposed active sites, and binder‐free electrode architecture. As a result, the Mo‐NiCo2O4/Co5.47N/NF exhibits remarkable catalytic activity toward the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), affording high current densities of 50 mA cm?2 at low overpotentials of 310 mV for OER, and 170 mV for HER, respectively. Moreover, a low voltage of 1.56 V is achieved for the Mo‐NiCo2O4/Co5.47N/NF‐based water splitting cell to reach 10 mA cm?2. More importantly, a portable overall water splitting device is demonstrated through the integration of a water‐splitting cell and two Zn–air batteries (open‐circuit voltage of 1.43 V), which are all fabricated based on Mo‐NiCo2O4/Co5.47N/NF, demonstrating a low‐cost way to generate fuel energy. This work offers an effective strategy to develop high‐performance metal‐doped heterostructured electrode.  相似文献   

7.
Bifunctional electrocatalysis for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) constitutes the bottleneck of various sustainable energy devices and systems like rechargeable metal–air batteries. Emerging catalyst materials are strongly requested toward superior electrocatalytic activities and practical applications. In this study, transition metal hydroxysulfides are presented as bifunctional OER/ORR electrocatalysts for Zn–air batteries. By simply immersing Co‐based hydroxide precursor into solution with high‐concentration S2?, transition metal hydroxides convert to hydroxysulfides with excellent morphology preservation at room temperature. The as‐obtained Co‐based metal hydroxysulfides are with high intrinsic reactivity and electrical conductivity. The electron structure of the active sites is adjusted by anion modulation. The potential for 10 mA cm?2 OER current density is 1.588 V versus reversible hydrogen electrode (RHE), and the ORR half‐wave potential is 0.721 V versus RHE, with a potential gap of 0.867 V for bifunctional oxygen electrocatalysis. The Co3FeS1.5(OH)6 hydroxysulfides are employed in the air electrode for a rechargeable Zn–air battery with a small overpotential of 0.86 V at 20.0 mA cm?2, a high specific capacity of 898 mAh g?1, and a long cycling life, which is much better than Pt and Ir‐based electrocatalyst in Zn–air batteries.  相似文献   

8.
Developing bifunctional electrocatalysts with high activities and long durability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial toward the practical implementation of rechargeable metal–air batteries. Here, a 3D nanoporous graphene (np‐graphene) doped with both N and Ni single atoms/clusters is reported. The predoping of N by chemical vapor deposition (CVD) dramatically increases the Ni doping amount and stability. The resulting N and Ni codoped np‐graphene has excellent electrocatalytic activities for both the ORR and the OER in alkaline aqueous solutions. The synergetic effects of N and Ni dopants are revealed by density functional theory calculations. The free‐standing Ni,N codoped 3D np‐graphene shows great potential as an economical catalyst/electrode for metal–air batteries.  相似文献   

9.
Synergistic improvements in the electrical conductivity and catalytic activity for the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) are of paramount importance for rechargeable metal–air batteries. In this study, one‐nanometer‐scale ultrathin cobalt oxide (CoOx) layers are fabricated on a conducting substrate (i.e., a metallic Co/N‐doped graphene substrate) to achieve superior bifunctional activity in both the ORR and OER and ultrahigh output power for flexible Zn–air batteries. Specifically, at the atomic scale, the ultrathin CoOx layers effectively accelerate electron conduction and provide abundant active sites. X‐ray absorption spectroscopy reveals that the metallic Co/N‐doped graphene substrate contributes to electron transfer toward the ultrathin CoOx layer, which is beneficial for the electrocatalytic process. The as‐obtained electrocatalyst exhibits ultrahigh electrochemical activity with a positive half‐wave potential of 0.896 V for ORR and a low overpotential of 370 mV at 10 mA cm?2 for OER. The flexible Zn–air battery built with this catalyst exhibits an ultrahigh specific power of 300 W gcat ?1, which is essential for portable devices. This work provides a new design pathway for electrocatalysts for high‐performance rechargeable metal–air battery systems.  相似文献   

10.
Obtaining bifunctional electrocatalysts with high activity for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is a main hurdle in the application of rechargeable metal‐air batteries. Earth‐abundant 3d transition metal‐based catalysts have been developed for the OER and ORR; however, most of these are based on oxides, whose insulating nature strongly restricts their catalytic performance. This study describes a metallic Ni‐Fe nitride/nitrogen‐doped graphene hybrid in which 2D Ni‐Fe nitride nanoplates are strongly coupled with the graphene support. Electronic structure of the Ni‐Fe nitride is changed by hybridizing with the nitrogen‐doped graphene. The unique heterostructure of this hybrid catalyst results in very high OER activity with the lowest onset overpotential (150 mV) reported, and good ORR activity comparable to that for commercial Pt/C. The high activity and durability of this bifunctional catalyst are also confirmed in rechargeable zinc‐air batteries that are stable for 180 cycles with an overall overpotential of only 0.77 V at 10 mA?2.  相似文献   

11.
Developing efficient and low-cost replacements for precious metals as electrocatalysts active in electrochemical reactions—the oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and oxygen reduction reaction (ORR)—is a top priority in renewable energy technology. In this work a highly active and very stable trifunctional electrocatalyst composed of Co2P embedded in Co, N, and P multi-doped carbon has been synthesized using zeolitic imidazolate frameworks as precursors. The synergistic effects between Co2P and the multi-heteroatom-doped carbon substrates afford materials having electrocatalytic activities for HER, OER, and ORR, which are comparable—or even superior to—those of commercial RuO2 or Pt/C catalysts. Density functional theory calculations show that Co2P has a higher density of states at the Fermi level than ConP (0 < n < 2), which promotes electron transfer and intermediates adsorption in the catalytic process. Zinc–air batteries and water splitting devices assembled using the materials as electrode electrocatalysts show good performance and outstanding stability. This work represents a breakthrough in improving the catalytic performance of non-precious metal electrocatalysts for OER, HER, and ORR, and opens new avenues for clean energy generation.  相似文献   

12.
A reliable and efficient solution to the current energy crisis and its associated environmental issues is provided by fuel cells, metal–air batteries and overall water splitting. The heart reactions for these technologies are oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Different supporters such as graphene, carbon nanotube, and graphitic carbon nitride have been used to avoid agglomeration of active materials and provide maximum active surface for these reactions. Among all the supporters, boron nitride (BN) gains extensive research attention due to its analogue with graphene and excellent stability with good oxidation and chemical inertness. In this mini-review, the well-known strategies (exfoliation, annealing, and CVD) used in the synthesis of BN with different morphologies for HER, OER and ORR applications have been briefly debated and summarized. The comparative analysis determines that the performance and stability of state-of-the-art electrocatalysts can be further boosted if they are deposited on BN. It is revealed that BN-based catalysts for HER, OER and ORR are rarely studied yet especially with non-noble transition metals, and this research direction should be studied deeply in future for practical applications.  相似文献   

13.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious‐metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double‐shelled hybrid nanocages with outer shells of Co‐N‐doped graphitic carbon (Co‐NGC) and inner shells of N‐doped microporous carbon (NC) by templating against core–shell metal–organic frameworks. The double‐shelled NC@Co‐NGC nanocages well integrate the high activity of Co‐NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn–air batteries. First‐principles calculations reveal that the high catalytic activities of Co‐NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow‐site C atoms with respect to the Co lattice in the Co‐NGC structure is a vital rate‐determining step to achieve excellent bifunctional electrocatalytic activity.  相似文献   

14.
Developing non‐noble‐metal electrocatalysts with high activity and low cost for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of paramount importance for improving the generation of H2 fuel by electrocatalytic water‐splitting. This study puts forward a new N‐anion‐decorated Ni3S2 material synthesized by a simple one‐step calcination route, acting as a superior bifunctional electrocatalyst for the OER/HER for the first time. The introduction of N anions significantly modifies the morphology and electronic structure of Ni3S2, bringing high surface active sites exposure, enhanced electrical conductivity, optimal HER Gibbs free‐energy (ΔGH*), and water adsorption energy change (ΔGH2O*). Remarkably, the obtained N‐Ni3S2/NF 3D electrode exhibits extremely low overpotentials of 330 and 110 mV to reach a current density of 100 and 10 mA cm?2 for the OER and HER in 1.0 m KOH, respectively. Moreover, an overall water‐splitting device comprising this electrode delivers a current density of 10 mA cm?2 at a very low cell voltage of 1.48 V. Our finding introduces a new way to design advanced bifunctional catalysts for water splitting.  相似文献   

15.
Among the bifunctional catalysts for water splitting, recently emerged transition‐metal single‐atom catalysts are theoretically considered to possess high potential, while the experimental activity is not satisfactory yet. Herein, an exceptionally efficient trifunctional metal–nitrogen–carbon (M–N–C) catalyst electrode, composed of a hierarchical carbon matrix embedding isolated nickel atoms with nickel–iron (NiFe) clusters, is presented. 1D microfibers and nanotubes grow sequentially from 2D nanosheets as sacrificial templates via two stages of solution‐ and solid‐phase reactions to form a 1D hierarchy. Exceptionally efficient bifunctional activity with an overpotential of only 13 mV at 10 mA cm?2 toward hydrogen evolution reaction (HER) and an overpotential of 210 mV at 30 mA cm?2 toward oxygen evolution reaction (OER) is obtained, surpassing each monofunctional activity ever reported. More importantly, an overpotential of only 126 and 326 mV is required to drive 500 mA cm?2 toward the HER and OER, respectively. For the first time, industrial‐scale water splitting with two bifunctional catalyst electrodes with a current density of 500 mA cm?2 at a potential of 1.71 V is demonstrated. Lastly, trifunctional catalytic activity including oxygen reduction reaction is also proven with a half‐wave potential at 0.848 V.  相似文献   

16.
The layer‐structured MoS2 is a typical hydrogen evolution reaction (HER) electrocatalyst but it possesses poor activity for the oxygen evolution reaction (OER). In this work, a cobalt covalent doping approach capable of inducing HER and OER bifunctionality into MoS2 for efficient overall water splitting is reported. The results demonstrate that covalently doping cobalt into MoS2 can lead to dramatically enhanced HER activity while simultaneously inducing remarkable OER activity. The catalyst with optimal cobalt doping density can readily achieve HER and OER onset potentials of ?0.02 and 1.45 V (vs reversible hydrogen electrode (RHE)) in 1.0 m KOH. Importantly, it can deliver high current densities of 10, 100, and 200 mA cm?2 at low HER and OER overpotentials of 48, 132, 165 mV and 260, 350, 390 mV, respectively. The reported catalyst activation approach can be adapted for bifunctionalization of other transition metal dichalcogenides.  相似文献   

17.
Electrocatalysts for oxygen‐reduction and oxygen‐evolution reactions (ORR and OER) are crucial for metal–air batteries, where more costly Pt‐ and Ir/Ru‐based materials are the benchmark catalysts for ORR and OER, respectively. Herein, for the first time Ni is combined with MnO species, and a 3D porous graphene aerogel‐supported Ni/MnO (Ni–MnO/rGO aerogel) bifunctional catalyst is prepared via a facile and scalable hydrogel route. The synthetic strategy depends on the formation of a graphene oxide (GO) crosslinked poly(vinyl alcohol) hydrogel that allows for the efficient capture of highly active Ni/MnO particles after pyrolysis. Remarkably, the resulting Ni–MnO/rGO aerogels exhibit superior bifunctional catalytic performance for both ORR and OER in an alkaline electrolyte, which can compete with the previously reported bifunctional electrocatalysts. The MnO mainly contributes to the high activity for the ORR, while metallic Ni is responsible for the excellent OER activity. Moreover, such bifunctional catalyst can endow the homemade Zn–air battery with better power density, specific capacity, and cycling stability than mixed Pt/C + RuO2 catalysts, demonstrating its potential feasibility in practical application of rechargeable metal–air batteries.  相似文献   

18.
Highly active and durable air cathodes to catalyze both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are urgently required for rechargeable metal–air batteries. In this work, an efficient bifunctional oxygen catalyst comprising hollow Co3O4 nanospheres embedded in nitrogen‐doped carbon nanowall arrays on flexible carbon cloth (NC‐Co3O4/CC) is reported. The hierarchical structure is facilely derived from a metal–organic framework precursor. A carbon onion coating constrains the Kirkendall effect to promote the conversion of the Co nanoparticles into irregular hollow oxide nanospheres with a fine scale nanograin structure, which enables promising catalytic properties toward both OER and ORR. The integrated NC‐Co3O4/CC can be used as an additive‐free air cathode for flexible all‐solid‐state zinc–air batteries, which present high open circuit potential (1.44 V), high capacity (387.2 mAh g?1, based on the total mass of Zn and catalysts), excellent cycling stability and mechanical flexibility, significantly outperforming Pt‐ and Ir‐based zinc–air batteries.  相似文献   

19.
Highly efficient and stable electrocatalysts, particularly those that are capable of multifunctionality in the same electrolyte, are in high demand for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this work, highly monodisperse CoP and Co2P nanocrystals (NCs) are synthesized using a robust solution‐phase method. The highly exposed (211) crystal plane and abundant surface phosphide atoms make the CoP NCs efficient catalysts toward ORR and HER, while metal‐rich Co2P NCs show higher OER performance owing to easier formation of plentiful Co2P@COOH heterojunctions. Density functional theory calculation results indicate that the desorption of OH* from cobalt sites is the rate‐limiting step for both CoP and Co2P in ORR and that the high content of phosphide can lower the reaction barrier. A water electrolyzer constructed with a CoP NC cathode and a Co2P NC anode can achieve a current density of 10 mA cm?2 at 1.56 V, comparable even to the noble metal‐based Pt/C and RuO2/C pair. Furthermore, the CoP NCs are employed as an air cathode in a primary zinc–air battery, exhibiting a high power density of 62 mW cm?2 and good stability.  相似文献   

20.
The development of high‐performance but low‐cost catalysts for the electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of central importance for realizing the prevailing application of metal–air batteries. Herein a facile route is devised to synthesize S, N codoped carbon cubes embedding Co–Fe carbides by pyrolyzing the Co–Fe Prussian blue analogues (PBA) coated with methionine. Via the strong metal–sulfur interaction, the methionine coating provides a robust sheath to restrain the cubic morphology of PBA upon pyrolysis, which is proved highly beneficial for promoting the specific surface area and active sites exposure, leading to remarkable bifunctionality of ORR and OER comparable to the benchmarks of Pt/C and RuO2. Further elaborative investigations on the activity origin and postelectrolytic composition unravel that for ORR the high activity is mainly contributed by the S, N codoped carbon shell with the inactive carbide phase converting into carbonate hydroxides. For OER, the embedded Co–Fe carbides transform in situ into layered (hydr)oxides, serving as the actual active sites for promoting water oxidation. Zn–air batteries employing the developed hollow structure as the air cathode catalyst demonstrate superb rechargeability, energy efficiency, as well as portability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号