首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Covalent organic frameworks (COF) or metal–organic frameworks have attracted significant attention for various applications due to their intriguing tunable micro/mesopores and composition/functionality control. Herein, a coordination‐induced interlinked hybrid of imine‐based covalent organic frameworks and Mn‐based metal–organic frameworks (COF/Mn‐MOF) based on the Mn? N bond is reported. The effective molecular‐level coordination‐induced compositing of COF and MOF endows the hybrid with unique flower‐like microsphere morphology and superior lithium‐storage performances that originate from activated Mn centers and the aromatic benzene ring. In addition, hollow or core–shell MnS trapped in N and S codoped carbon (MnS@NS‐C‐g and MnS@NS‐C‐l) are also derived from the COF/Mn‐MOF hybrid and they exhibit good lithium‐storage properties. The design strategy of COF–MOF hybrid can shed light on the promising hybridization on porous organic framework composites with molecular‐level structural adjustment, nano/microsized morphology design, and property optimization.  相似文献   

2.
Over the past two decades, metal–organic frameworks (MOFs), a type of porous material, have aroused great interest as precursors or templates for the derivation of metal oxides and composites for the next generation of electrochemical energy storage applications owing to their high specific surface areas, controllable structures, and adjustable pore sizes. The electrode materials, which affect the performance in practical applications, are pivotal components of batteries and supercapacitors. Metal oxide composites derived from metal–organic frameworks possessing high reversible capacity and superior rate and cycle performance are excellent electrode materials. In this Review, potential applications for MOF‐derived metal oxide composites for lithium‐ion batteries, sodium‐ion batteries, lithium–oxygen batteries, and supercapacitors are studied and summarized. Finally, the challenges and opportunities for future research on MOF‐derived metal oxide composites are proposed on the basis of academic knowledge from the reported literature as well as from experimental experience.  相似文献   

3.
Proton conducting nanoporous materials attract substantial attention with respect to applications in fuel cells, supercapacitors, chemical sensors, and information processing devices inspired by biological systems. Here, a crystalline, nanoporous material which offers dynamic remote‐control over the proton conduction is presented. This is realized by using surface‐mounted metal–organic frameworks (SURMOFs) with azobenzene side groups that can undergo light‐induced reversible isomerization between the stable trans and cis states. The transcis photoisomerization results in the modulation of the interaction between MOF and guest molecules, 1,4‐butanediol and 1,2,3‐triazole; enabling the switching between the states with significantly increased (trans) and reduced (cis) conductivity. Quantum chemical calculations show that the trans‐to‐cis isomerization results in the formation of stronger hydrogen bridges of the guest molecules with the azo groups, causing stronger bonding of the guest molecules and, as a result, smaller proton conductivity. It is foreseen that photoswitchable proton‐conducting materials may find its application in advanced, remote‐controllable chemical sensors, and a variety of devices based on the conductivity of protons or other charged molecules, which can be interfaced with biological systems.  相似文献   

4.
Functional nanoparticles encapsulated within metal–organic frameworks (MOFs) as an emerging class of composite materials attract increasing attention owing to their enhanced or even novel properties caused by the synergistic effect between the two functional materials. However, there is still no ideal composite structure as platform to systematically analyze and evaluate the relation between the enhanced catalytic performance of composites and the structure of MOF shells. In this work, taking RhCoNi ternary alloy nanoflowers, for example, first the RhCoNi@MOF composite catalysts sheathed with different structured MOFs via a facile self‐sacrificing template process are successfully fabricated. The structure type of MOF shells is easily adjustable by using different organic molecules as etchant and coordination reagent (e.g., 2,5‐dihydroxyterephthalic acid or 2‐methylimidazole), which can dissolve out the Co or Ni element in the alloy template in a targeted manner, thereby producing ZIF‐67(Co) or MOF‐74(Ni) shells accordingly. With the difference between the two MOF shells in the aperture sizes, the as‐prepared two RhCoNi@MOF composites preform distinct size selectivity during the alkene hydrogenation. This work would help us to get more comprehensive understanding of the intrinsic role of MOFs behind the enhanced catalytic performance of nanoparticle@MOF composites.  相似文献   

5.
Though generally considered insulating, recent progress on the discovery of conductive porous metal–organic frameworks (MOFs) offers new opportunities for their integration as electroactive components in electronic devices. Compared to classical semiconductors, these metal–organic hybrids combine the crystallinity of inorganic materials with easier chemical functionalization and processability. Still, future development depends on the ability to produce high‐quality films with fine control over their orientation, crystallinity, homogeneity, and thickness. Here self‐assembled monolayer substrate modification and bottom‐up techniques are used to produce preferentially oriented, ultrathin, conductive films of Cu‐CAT‐1. The approach permits to fabricate and study the electrical response of MOF‐based devices incorporating the thinnest MOF film reported thus far (10 nm thick).  相似文献   

6.
Metal–organic frameworks (MOFs) have become a research hotspot since they have been explored as convenient precursors for preparing various multifunctional nanomaterials. However, the preparation of MOF networks with controllable flake morphology in large scale is not realized yet. Herein, a self‐template strategy is developed to prepare MOF networks. In this work, layered double‐metal hydroxide (LDH) and other layered metal hydroxides are used not only as a scaffold but also as a self‐sacrificed metal source. After capturing the abundant metal cations identically from the LDH by the organic linkers, MOF networks are in situ formed. It is interesting that the MOF network‐derived carbon materials retain the flake morphology and exhibit a unique honeycomb‐like macroporous structure due to the confined shrinkage of the polyhedral facets. The overall properties of the carbon networks are adjustable according to the tailored metal compositions in LDH and the derived MOFs, which are desirable for target‐oriented applications as exemplified by the electrochemical application in supercapacitors.  相似文献   

7.
Metal?organic frameworks (MOFs), also known as coordination polymers, represent an interesting type of solid crystalline materials that can be straightforwardly self‐assembled through the coordination of metal ions/clusters with organic linkers. Owing to the modular nature and mild conditions of MOF synthesis, the porosities of MOF materials can be systematically tuned by judicious selection of molecular building blocks, and a variety of functional sites/groups can be introduced into metal ions/clusters, organic linkers, or pore spaces through pre‐designing or post‐synthetic approaches. These unique advantages enable MOFs to be used as a highly versatile and tunable platform for exploring multifunctional MOF materials. Here, the bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine.  相似文献   

8.
Metal–organic frameworks (MOFs) are an intriguing type of crystalline porous materials that can be readily built from metal ions or clusters and organic linkers. Recently, MOF materials, featuring high surface areas, rich structural tunability, and functional pore surfaces, which can accommodate a variety of guest molecules as proton carriers and to systemically regulate the proton concentration and mobility within the available space, have attracted tremendous attention for their roles as solid electrolytes in fuel cells. Recent advances in MOFs as a versatile platform for proton conduction in the field of humidity condition proton-conduction, anhydrous atmosphere proton-conduction, single-crystal proton-conduction, and including MOF-based membranes for fuel cells, are summarized and highlighted. Furthermore, the challenges, future trends, and prospects of MOF materials for solid electrolytes are also discussed.  相似文献   

9.
Crystalline frameworks including primarily metal organic frameworks (MOF) and covalent organic frameworks (COF) have received much attention in the field of heterogeneous catalysts recently. Beyond providing large surface area and spatial confinement, these crystalline frameworks can be designed to either directly act as or influence the catalytic sites at molecular level. This approach offers a unique advantage to gain deeper insights of structure–activity correlations in solid materials, leading to new guiding principles for rational design of advanced solid catalysts for potential important applications related to energy and fine chemical synthesis. In this review, recent key progress achieved in designing MOF‐ and COF‐based molecular solid catalysts and the mechanistic understanding of the catalytic centers and associated reaction pathways are summarized. The state‐of‐the‐art rational design of MOF‐ and COF‐based solid catalysts in this review is grouped into seven different areas: (i) metalated linkers, (ii) metalated moieties anchored on linkers, (iii) organic moieties anchored on linkers, (iv) encapsulated single sites in pores, and (v) metal‐mode‐based active sites in MOFs. Along with this, some attention is paid to theoretical studies about the reaction mechanisms. Finally, technical challenges and possible solutions in applying these catalysts for practical applications are also presented.  相似文献   

10.
When fabricating macroscopic devices exploiting the properties of organic chromophores, the corresponding molecules need to be condensed into a solid material. Since optical absorption properties are often strongly affected by interchromophore interactions, solids with a well-defined structure carry substantial advantages over amorphous materials. Here, the metal–organic framework (MOF)-based approach is presented. By appropriate functionalization, most organic chromophores can be converted to function as linkers, which can coordinate to metal or metal-oxo centers so as to yield stable, crystalline frameworks. Photoexcitations in such chromophore-based MOFs are surveyed, with a special emphasis on light-switchable MOFs from photochromic molecules. The conventional powder form of MOFs obtained using solvothermal approaches carries certain disadvantages for optical applications, such as limited efficiency resulting from absorption and light scattering caused by the (micrometer-sized) powder particles. How these problems can be avoided by using MOF thin films is demonstrated.  相似文献   

11.
In recent years, metal–organic frameworks (MOFs) have received extensive interest because of the diversity of their composition, structure, and function. To promote the MOFs' function and performance, the construction of hollow structural metal–organic frameworks and nanoparticle–MOF composites is significantly effective but remains a considerable challenge. In this article, a transformation strategy is developed to synthesize hollow structural Co‐MOF‐74 by solvothermal transformation of ZIF‐67. These Co‐MOF‐74 particles exhibit a double‐layer hollow shell structure without remarkable shape change compared to original ZIF‐67 particles. The formation of hollow structure stemmed from the density difference of Co between ZIF‐67 and Co‐MOF‐74. By this strategy, hollow structural Co‐MOF‐74 with different sizes and shapes are obtained from corresponding ZIF‐67, and metal nanoparticles@Co‐MOF‐74 is synthesized by corresponding nanoparticles@Co‐ZIF‐67. To verify the structural advantages of hollow structural Co‐MOF‐74 and Ag nanoparticles@Co‐MOF‐74, photocatalytic CO2 reduction is used as a model reaction. Conventionally synthesized Co‐MOF‐74 (MOF‐74‐C), hollow structural Co‐MOF‐74 synthesized by transformation method (MOF‐74‐T) and Ag nanoparticles@Co‐MOF‐74 (AgNPs@MOF‐74) are used as cocatalysts in this reaction. As a result, the cocatalytic activity of MOF‐74‐T and AgNPs@MOF‐74 is 1.8 times and 3.8 times that of MOF‐74‐C, respectively.  相似文献   

12.
Exploration of molecular functions and material properties based on the control of chirality would be a scientifically elegant approach. Here, the fabrication and function of chiral-featured materials from both chiral and achiral components using a supramolecular nanoarchitectonics concept are discussed. The contents are classified in to three topics: i) chiral nanoarchitectonics of rather general molecular assemblies; ii) chiral nanoarchitectonics of metal–organic frameworks (MOFs); iii) chiral nanoarchitectonics in liquid crystals. MOF structures are based on nanoscopically well-defined coordinations, while mesoscopic orientations of liquid-crystalline phases are often flexibly altered. Discussion on the effects and features in these representative materials systems with totally different natures reveals the universal importance of supramolecular chiral nanoarchitectonics. Amplification of chiral molecular information from molecules to materials-level structures and the creation of chirality from achiral components upon temporal statistic fluctuations are universal, regardless of the nature of the assemblies. These features are thus surely advantageous characteristics for a wide range of applications.  相似文献   

13.
An organic semiconductor thin film is a solid‐state matter comprising one or more molecules. For applications in electronics and photonics, several distinct functional organic thin films are stacked together to create a variety of devices such as organic light‐emitting diodes and organic solar cells. The energy levels at these thin‐film junctions dictate various electronic processes such as the charge transport across these junctions, the exciton dissociation rates at donor–acceptor molecular interfaces, and the charge trapping during exciton formation in a host–dopant system. These electronic processes are vital to a device's performance and functionality. To uncover a general scientific principle in governing the interface energy levels, highest occupied molecular orbitals, and vacuum level dipoles, herein a comprehensive experimental research is conducted on several dozens of organic–organic heterojunctions representative of various device applications. It is found that the experimental data map on interface energy levels, after correcting variables such as molecular orientation‐dependent ionization energies, consists of three distinct regions depending on interface fundamental physical parameters such as Fermi energy, work function, highest occupied molecular orbitals, and lowest unoccupied molecular orbitals. This general energy map provides a master guide in selection of new materials for fabricating future generations of organic semiconductor devices.  相似文献   

14.
Metal–organic frameworks (MOFs) are an interesting and useful class of coordination polymers, constructed from metal ion/cluster nodes and functional organic ligands through coordination bonds, and have attracted extensive research interest during the past decades. Due to the unique features of diverse compositions, facile synthesis, easy surface functionalization, high surface areas, adjustable porosity, and tunable biocompatibility, MOFs have been widely used in hydrogen/methane storage, catalysis, biological imaging and sensing, drug delivery, desalination, gas separation, magnetic and electronic devices, nonlinear optics, water vapor capture, etc. Notably, with the rapid development of synthetic methods and surface functionalization strategies, smart MOF‐based nanocomposites with advanced bio‐related properties have been designed and fabricated to meet the growing demands of MOF materials for biomedical applications. This work outlines the synthesis and functionalization and the recent advances of MOFs in biomedical fields, including cargo (drugs, nucleic acids, proteins, and dyes) delivery for cancer therapy, bioimaging, antimicrobial, biosensing, and biocatalysis. The prospects and challenges in the field of MOF‐based biomedical materials are also discussed.  相似文献   

15.
The integration of swellable metal–organic frameworks (MOFs) into polymeric composite films is a straightforward strategy to develop soft materials that undergo reversible shape transformations derived from the intrinsic flexibility of MOF crystals. However, a crucial step toward their practical application relies on the ability to attain specific and programmable actuation, which enables the design of self‐shaping objects on demand. Herein, a chemical etching method is demonstrated for the fabrication of patterned composite films showing tunable self‐folding response, predictable and reversible 2D‐to‐3D shape transformations triggered by water adsorption/desorption. These films are fabricated by selective removal of swellable MOF crystals allowing control over their spatial distribution within the polymeric film. Upon exposure to moisture, various programmable 3D architectures, which include a mechanical gripper, a lift, and a unidirectional walking device, are generated. Remarkably, these 2D‐to‐3D shape transformations can be reversed by light‐induced desorption. The reported strategy offers a platform for fabricating flexible MOF‐based autonomous soft mechanical devices with functionalities for micromanipulation, automation, and robotics.  相似文献   

16.
Ambipolar organic field‐effect transistors (OFETs) are vital for the construction of high‐performance all‐organic digital circuits. The bilayer p–n junction structure, which is composed of separate layers of p‐ and n‐type organic semiconductors, is considered a promising way to realize well‐balanced ambipolar charge transport. However, this approach suffers from severely reduced mobility due to the rough interface between the polycrystalline thin films of p‐ and n‐type organic semiconductors. Herein, 2D molecular crystal (2DMC) bilayer p–n junctions are proposed to construct high‐performance and well‐balanced ambipolar OFETs. The molecular‐scale thickness of the 2DMC ensures high injection efficiency and the atomically flat surface of the 2DMC leads to high‐quality p‐ and n‐layer interfaces. Moreover, by controlling the layer numbers of the p‐ and n‐type 2DMCs, the electron and hole mobilities are tuned and well‐balanced ambipolar transport is accomplished. The hole and electron mobilities reach up to 0.87 and 0.82 cm2 V?1 s?1, respectively, which are the highest values among organic single‐crystalline double‐channel OFETs measured in ambient air. This work provides a general route to construct high‐performance and well‐balanced ambipolar OFETs based on available unipolar materials.  相似文献   

17.
Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal–organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF‐derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium‐ion storage performances of MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF‐derived materials in electrochemical energy storage are discussed.  相似文献   

18.
Electrochemical energy conversion and storage devices such as fuel cells and metal–air batteries have been extensively studied in recent decades for their excellent conversion efficiency, high energy capacity, and low environmental impact. However, sluggish kinetics of the oxygen‐related reactions at air cathodes, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are still worth improving. Noble metals such as platinum (Pt), iridium (Ir), ruthenium (Ru) and their oxides are considered as the benchmark ORR and OER electrocatalysts, but they are expensive and prone to be poisoned due to the fuel crossover effect, and may suffer from agglomeration and leaching after long‐term usage. To mitigate these limits, it is highly desirable to design alternative ORR/OER electrocatalysts with prominent performance. Metal–organic frameworks (MOFs) are a class of porous crystalline materials consisting metal ions/clusters coordinated by organic ligands. Their crystalline structure, tunable pore size and high surface area afford them wide opportunities as catalytic materials. This Review covers MOF‐derived ORR/OER catalysts in electrochemical energy conversion, with a focus on the different strategies of material design and preparation, such as composition control and nanostructure fabrication, to improve the activity and durability of MOF‐derived electrocatalysts.  相似文献   

19.
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.  相似文献   

20.
Controlled growth of metal–organic frameworks (MOFs) nanocrystals on requisite surfaces is highly desired for myriad applications related to catalysis, energy, and electronics. Here, this challenge is addressed by overlaying arbitrary surfaces with a thermally evaporated metal layer to enable the well‐aligned growth of ultralong quasi‐2D MOF nanoarrays comprising cobalt ions and thiophenedicarboxylate acids. This interfacial engineering approach allows preferred chelation of carboxyl groups in the ligands with the metal interlayers, thereby making possible the fabrication and patterning of MOF nanoarrays on substrates of any materials or morphologies. The MOF nanoarrays grown on porous metal scaffolds demonstrate high electrocatalytic capability for water oxidation, exhibiting a small overpotential of 270 mV at 10 mA cm?2, or 317 mV at 50 mA cm?2 as well as negligible decay of performance within 30 h. The enhanced performance stems from the improved electron and ion transport in the hierarchical porous nanoarrays consisting of in situ formed oxyhydroxide nanosheets in the electrochemical processes. This approach for mediating the growth of MOF nanoarrays can serve as a promising platform for diverse applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号