首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The practical application of lithium–sulfur (Li–S) batteries is hindered by the “shuttle” of lithium polysulfides (LiPS) and sluggish Li–S kinetics issues. Herein, a synergistic strategy combining mesoporous architecture design and defect engineering is proposed to synthesize multifunctional defective 3D ordered mesoporous cobalt sulfide (3DOM N‐Co9S8?x) to address the shuttling and sluggish reaction kinetics of polysulfide in Li–S batteries. The unique 3DOM design provides abundant voids for sulfur storage and enlarged active interfaces that reduce electron/ion diffusion pathways. Meanwhile, X‐ray absorption spectroscopy shows that the surface defect engineering tunes the CoS4 tetrahedra to CoS6 octahedra on Co9S8, endowing abundance of S vacancies on the Co9S8 octahedral sites. The ever‐increasing S vacancies over the course of electrochemical process further promotes the chemical trapping of LiPS and its conversion kinetics, rendering fast and durable Li–S chemistry. Benefiting from these features, the as‐developed 3DOM N‐Co9S8?x/S cathode delivers high areal capacity, superb rate capability, and excellent cyclic stability with ultralow capacity fading rate under raised sulfur loading and low electrolyte content. This design strategy promotes the development of practically viable Li–S batteries and sheds lights on the material engineering in related energy storage application.  相似文献   

2.
Lithium metal is considered as the most promising anode material due to its high theoretical specific capacity and the low electrochemical reduction potential. However, severe dendrite problems have to be addressed for fabricating stable and rechargeable batteries (e.g., lithium–iodine batteries). To fabricate a high‐performance lithium–iodine (Li–I2) battery, a 3D stable lithium metal anode is prepared by loading of molten lithium on carbon cloth doped with nitrogen and phosphorous. Experimental observations and theoretical calculation reveal that the N,P codoping greatly improves the lithiophilicity of the carbon cloth, which not only enables the uniform loading of molten lithium but also facilitates reversible lithium stripping and plating. Dendrites formation can thus be significantly suppressed at a 3D lithium electrode, leading to stable voltage profiles over 600 h at a current density of 3 mA cm?2. A fuel cell with such an electrode and a lithium–iodine cathode shows impressive long‐term stability with a capacity retention of around 100% over 4000 cycles and enhanced high‐rate capability. These results demonstrate the promising applications of 3D stable lithium metal anodes in next‐generation rechargeable batteries.  相似文献   

3.
Lithium–sulfur (Li–S) batteries, based on the redox reaction between elemental sulfur and lithium metal, have attracted great interest because of their inherently high theoretical energy density. However, the severe polysulfide shuttle effect and sluggish reaction kinetics in sulfur cathodes, as well as dendrite growth in lithium‐metal anodes are great obstacles for their practical application. Herein, a two‐in‐one approach with superhierarchical cobalt‐embedded nitrogen‐doped porous carbon nanosheets (Co/N‐PCNSs) as stable hosts for both elemental sulfur and metallic lithium to improve their performance simultaneously is reported. Experimental and theoretical results reveal that stable Co nanoparticles, elaborately encapsulated by N‐doped graphitic carbon, can work synergistically with N heteroatoms to reserve the soluble polysulfides and promote the redox reaction kinetics of sulfur cathodes. Moreover, the high‐surface‐area pore structure and the Co‐enhanced lithiophilic N heteroatoms in Co/N‐PCNSs can regulate metallic lithium plating and successfully suppress lithium dendrite growth in the anodes. As a result, a full lithium–sulfur cell constructed with Co/N‐PCNSs as two‐in‐one hosts demonstrates excellent capacity retention with stable Coulombic efficiency.  相似文献   

4.
Owing to the high theoretical specific capacity (1675 mA h g?1) and low cost, lithium–sulfur (Li–S) batteries offer advantages for next‐generation energy storage. However, the polysulfide dissolution and low electronic conductivity of sulfur cathodes limit the practical application of Li–S batteries. To address such issues, well‐designed yolk–shelled carbon@Fe3O4 (YSC@Fe3O4) nanoboxes as highly efficient sulfur hosts for Li–S batteries are reported here. With both physical entrapment by carbon shells and strong chemical interaction with Fe3O4 cores, this unique architecture immobilizes the active material and inhibits diffusion of the polysulfide intermediates. Moreover, due to their high conductivity, the carbon shells and the polar Fe3O4 cores facilitate fast electron/ion transport and promote continuous reactivation of the active material during the charge/discharge process, resulting in improved electrochemical utilization and reversibility. With these merits, the S/YSC@Fe3O4 cathodes support high sulfur content (80 wt%) and loading (5.5 mg cm?2) and deliver high specific capacity, excellent rate capacity, and long cycling stability. This work provides a new perspective to design a carbon/metal‐oxide‐based yolk–shelled framework as a high sulfur‐loading host for advanced Li–S batteries with superior electrochemical properties.  相似文献   

5.
6.
7.
8.
9.
Metal organic frameworks (MOFs)‐derived porous carbon is proposed as a promising candidate to develop novel, tailorable structures as polysulfides immobilizers for lithium–sulfur batteries because of their high‐efficiency electron conductive networks, open ion channels, and abundant central ions that can store a large amount of sulfur and trap the easily soluble polysulfides. However, most central ions in MOFs‐derived carbon framework are encapsulated in the carbon matrix so that their exposures as active sites to adsorb polysulfides are limited. To resolve this issue, highly dispersed TiO2 nanoparticles are anchored into the cobalt‐containing carbon polyhedras that are converted from ZIF‐67. Such a type of TiO2 and Co nanoparticles‐decorated carbon polyhedras (C? Co/TiO2) provide more exposed active sites and much stronger chemical trapping for polysulfides, hence improving the sulfur utilization and enhancing reaction kinetics of sulfur‐containing cathode simultaneously. The sulfur‐containing carbon polyhedras decorated with TiO2 nanoparticles (S@C? Co/TiO2) show a significantly improved cycling stability and rate capability, and deliver a discharge capacity of 32.9% higher than that of TiO2‐free S@C? Co cathode at 837.5 mA g?1 after 200 cycles.  相似文献   

10.
All‐solid‐state batteries (ASSBs) with ceramic‐based solid‐state electrolytes (SSEs) enable high safety that is inaccessible with conventional lithium‐ion batteries. Lithium metal, the ultimate anode with the highest specific capacity, also becomes available with nonflammable SSEs in ASSBs, which offers promising energy density. The rapid development of ASSBs, however, is significantly hampered by the large interfacial resistance as a matched lithium/ceramic interface that is not easy to pursue. Here, a lithium–graphite (Li–C) composite anode is fabricated, which shows a dramatic modification in wettability with garnet SSE. An intimate Li–C/garnet interface is obtained by casting Li–C composite onto garnet‐type SSE, delivering an interfacial resistance as low as 11 Ω cm2. As a comparison, pure Li/garnet interface gives a large resistance of 381 Ω cm2. Such improvement can be ascribed to the experiment‐measured increased viscosity of Li–C composite and simulation‐verified limited interfacial reaction. The Li–C/garnet/Li–C symmetric cell exhibits stable plating/striping performance with small voltage hysteresis and endures a critical current density up to 1.0 mA cm?2. The full cell paired with LiFePO4 shows stable cycle performance, comparable to the cell with liquid electrolyte. The present work demonstrates a promising strategy to develop ceramic‐compatible lithium metal‐based anodes and hence low‐impedance ASSBs.  相似文献   

11.
The primary challenge with lithium–sulfur battery research is the design of sulfur cathodes that exhibit high electrochemical efficiency and stability while keeping the sulfur content and loading high and the electrolyte/sulfur ratio low. With a systematic investigation, a novel graphene/cotton‐carbon cathode is presented here that enables sulfur loading and content as high as 46 mg cm?2 and 70 wt% with an electrolyte/sulfur ratio of as low as only 5. The graphene/cotton‐carbon cathodes deliver peak capacities of 926 and 765 mA h g?1, respectively, at C/10 and C/5 rates, which translate into high areal, gravimetric, and volumetric capacities of, respectively, 43 and 35 mA h cm?2, 648 and 536 mA h g?1, and 1067 and 881 mA h cm?3 with a stable cyclability. They also exhibit superior cell‐storage capability with 95% capacity‐retention, a low self‐discharge constant of just 0.0012 per day, and stable poststorage cyclability after storing over a long period of six months. This work demonstrates a viable approach to develop lithium–sulfur batteries with practical energy densities exceeding that of lithium‐ion batteries.  相似文献   

12.
Lithium–sulfur batteries, as one of promising next‐generation energy storage devices, hold great potential to meet the demands of electric vehicles and grids due to their high specific energy. However, the sluggish kinetics and the inevitable “shuttle effect” severely limit the practical application of this technology. Recently, design of composite cathode with effective catalysts has been reported as an essential way to overcome these issues. In this work, oxygen‐deficient ferric oxide (Fe2O3?x), prepared by lithiothermic reduction, is used as a low‐cost and effective cathodic catalyst. By introducing a small amount of Fe2O3?x into the cathode, the battery can deliver a high capacity of 512 mAh g?1 over 500 cycles at 4 C, with a capacity fade rate of 0.049% per cycle. In addition, a self‐supporting porous S@KB/Fe2O3?x cathode with a high sulfur loading of 12.73 mg cm?2 is prepared by freeze‐drying, which can achieve a high areal capacity of 12.24 mAh cm?2 at 0.05 C. Both the calculative and experimental results demonstrate that the Fe2O3?x has a strong adsorption toward soluble polysulfides and can accelerate their subsequent conversion to insoluble products. As a result, this work provides a low‐cost and effective catalyst candidate for the practical application of lithium–sulfur batteries.  相似文献   

13.
14.
Molybdenum disulfide (MoS2) is a promising anode for high performance sodium‐ion batteries due to high specific capacity, abundance, and low cost. However, poor cycling stability, low rate capability and unclear electrochemical reaction mechanism are the main challenges for MoS2 anode in Na‐ion batteries. In this study, molybdenum disulfide/carbon (MoS2/C) nanospheres are fabricated and used for Na‐ion battery anodes. MoS2/C nanospheres deliver a reversible capacity of 520 mAh g?1 at 0.1 C and maintain at 400 mAh g?1 for 300 cycles at a high current density of 1 C, demonstrating the best cycling performance of MoS2 for Na‐ion batteries to date. The high capacity is attributed to the short ion and electron diffusion pathway, which enables fast charge transfer and low concentration polarization. The stable cycling performance and high coulombic efficiency (~100%) of MoS2/C nanospheres are ascribed to (1) highly reversible conversion reaction of MoS2 during sodiation/desodiation as evidenced by ex‐situ X‐ray diffraction (XRD) and (2) the formation of a stable solid electrolyte interface (SEI) layer in fluoroethylene carbonate (FEC) based electrolyte as demonstrated by fourier transform infrared spectroscopy (FTIR) measurements.  相似文献   

15.
16.
Fast lithium ion transport with a high current density is critical for thick sulfur cathodes, stemming mainly from the difficulties in creating effective lithium ion pathways in high sulfur content electrodes. To develop a high‐rate cathode for lithium–sulfur (Li–S) batteries, extenuation of the lithium ion diffusion barrier in thick electrodes is potentially straightforward. Here, a phyllosilicate material with a large interlamellar distance is demonstrated in high‐rate cathodes as high sulfur loading. The interlayer space (≈1.396 nm) incorporated into a low lithium ion diffusion barrier (0.155 eV) significantly facilitates lithium ion diffusion within the entire sulfur cathode, and gives rise to remarkable nearly sulfur loading‐independent cell performances. When combined with 80% sulfur contents, the electrodes achieve a high capacity of 865 mAh g?1 at 1 mA cm?2 and a retention of 345 mAh g?1 at a high discharging/charging rate of 15 mA cm?2, with a sulfur loading up to 4 mg. This strategy represents a major advance in high‐rate Li–S batteries via the construction of fast ions transfer paths toward real‐life applications, and contributes to the research community for the fundamental mechanism study of loading‐independent electrode systems.  相似文献   

17.
Developing appropriate sulfur cathode materials in carbonate‐based electrolyte is an important research subject for lithium‐sulfur batteries. Although several microporous carbon materials as host for sulfur reveal the effect, methods for producing microporous carbon are neither easy nor well controllable. Moreover, due to the complexity and limitation of microporous carbon in their fabrication process, there has been rare investigation of influence on electrochemical behavior in the carbonate‐based electrolyte for lithium‐sulfur batteries by tuning different micropore size(0–2 nm) of carbon host. Here, we demonstrate an immediate carbonization process, self‐activation strategy, which can produce microporous carbon for a sulfur host from alkali‐complexes. Besides, by changing different alkali‐ion in the previous complex, the obtained microporous carbon exhibits a major portion of ultramicropore (<0.7 nm, from 54.9% to 25.8%) and it is demonstrated that the micropore structure of the host material plays a vital role in confining sulfur molecule. When evaluated as cathode materials in a carbonate‐based electrolyte for Li‐S batteries, such microporous carbon/sulfur composite can provide high reversible capacity, cycling stability and good rate capability.  相似文献   

18.
19.
Lithium–sulfur (Li–S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms‐doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li–S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole–dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong‐couple effect toward Li2Sx, the principles for rational design of doped carbon scaffolds in Li–S batteries to achieve a strong electrostatic dipole–dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides.  相似文献   

20.
The reversible formation of chemical bonds has potential for tuning multi‐electron redox reactions in emerging energy‐storage applications, such as lithium?sulfur batteries. The dissolution of polysulfide intermediates, however, results in severe shuttle effect and sluggish electrochemical kinetics. In this study, quinonoid imine is proposed to anchor polysulfides and to facilitate the formation of Li2S2/Li2S through the reversible chemical transition between protonated state (? NH+ ?) and deprotonated state (? N?). When serving as the sulfur host, the quinonoid imine‐doped graphene affords a very tiny shuttle current of 2.60 × 10?4 mA cm?2, a rapid redox reaction of polysulfide, and therefore improved sulfur utilization and enhanced rate performance. A high areal specific capacity of 3.72 mAh cm?2 is achieved at 5.50 mA cm?2 on the quinonoid imine‐doped graphene based electrode with a high sulfur loading of 3.3 mg cm?2. This strategy sheds a new light on the organic redox mediators for reversible modulation of electrochemical reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号