首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In bottom‐contact organic field‐effect transistors (OFETs), the functionalization of source/drain electrodes leads to a tailored surface chemistry for film growth and controlled interface energetics for charge injection. This report describes a comprehensive investigation into separating and correlating the energetic and morphological effects of a self‐assembled monolayers (SAMs) treatment on Au, Ag, and Cu electrodes. Fluorinated 5,11‐bis(triethylsilylethynyl) anthradithiophene (diF‐TES‐ADT) and pentafluorobenzenethiol (PFBT) are employed as a soluble small‐molecule semiconductor and a SAM material, respectively. Upon SAM modification, the Cu electrode devices benefit from a particularly dramatic performance improvement, closely approaching the performance of OFETs with PFBT‐Au and PFBT‐Ag. Ultraviolet photoemission spectroscopy, polarized optical microscopy, grazing‐incidence wide‐angle X‐ray scattering elucidate the metal work function change and templated crystal growth with high crystallinity resulting from SAMs. The transmission‐line method separates the channel and contact properties from the measured OFET current–voltage data, which conclusively describes the impact of the SAMs on charge injection and transport behavior.  相似文献   

2.
报道了一种OFET,它采用ITO作为源漏电极,聚酰亚胺为绝缘层,CuPc为半导体层.实验结果表明,该器件具有明显的场效应性质,性能较好,载流子迁移率和开关比分别达2.3×10-3 cm2/V.s、800,表明ITO是一种合适的、有前途的p型OFET源漏极材料.为此,本文对由电极材料和半导体材料间形成的接触电阻对OFET性能影响进行了分析.  相似文献   

3.
Despite recent efforts for the development of transition‐metal‐dichalcogenide‐based high‐performance thin‐film transistors, device performance has not improved much, mainly because of the high contact resistance at the interface between the 2D semiconductor and the metal electrode. Edge contact has been proposed for the fabrication of a high‐quality electrical contact; however, the complete electronic properties for the contact resistance have not been elucidated in detail. Using the scanning tunneling microscopy/spectroscopy and scanning transmission electron microscopy techniques, the edge contact, as well as the lateral boundary between the 2D semiconducting layer and the metalized interfacial layer, are investigated, and their electronic properties and the energy band profile across the boundary are shown. The results demonstrate a possible mechanism for the formation of an ohmic contact in homojunctions of the transition‐metal dichalcogenides semiconductor–metal layers and suggest a new device scheme utilizing the low‐resistance edge contact.  相似文献   

4.
Source–semiconductor–drain coplanar transistors with an organic semiconductor layer located within the same plane of source/drain electrodes are attractive for next‐generation electronics, because they could be used to reduce material consumption, minimize parasitic leakage current, avoid cross‐talk among different devices, and simplify the fabrication process of circuits. Here, a one‐step, drop‐casting‐like printing method to realize a coplanar transistor using a model semiconductor/insulator [poly(3‐hexylthiophene) (P3HT)/polystyrene (PS)] blend is developed. By manipulating the solution dewetting dynamics on the metal electrode and SiO2 dielectric, the solution within the channel region is selectively confined, and thus make the top surface of source/drain electrodes completely free of polymers. Subsequently, during solvent evaporation, vertical phase separation between P3HT and PS leads to a semiconductor–insulator bilayer structure, contributing to an improved transistor performance. Moreover, this coplanar transistor with semiconductor–insulator bilayer structure is an ideal system for injecting charges into the insulator via gate‐stress, and the thus‐formed PS electret layer acts as a “nonuniform floating gate” to tune the threshold voltage and effective mobility of the transistors. Effective field‐effect mobility higher than 1 cm2 V?1 s?1 with an on/off ratio > 107 is realized, and the performances are comparable to those of commercial amorphous silicon transistors. This coplanar transistor simplifies the fabrication process of corresponding circuits.  相似文献   

5.
The influence of a polymer interface modifier on the performance of solution‐processed indium‐based metal‐oxide (MO) thin‐film transistors (TFTs) is investigated. We use the polymer ethoxylated polyethylenimine (PEIE). Compared to a reference sample this modification enhances the mobility by a factor of four, clearly reduces the contact and the sheet resistance, and decreases the charge carrier activation energy by about 20%. The improved electrical performance originates from both a reduced contact and a reduced sheet resistance of the TFTs. The molecular dipole of PEIE reduces the work function of the electrodes. Adversely the dipole enhances the off current and the trap density at the semiconductor/dielectric interface for bottom‐contact transistors with small channel length. The substrate becomes highly polar with a PEIE‐treatment. Accordingly, topographical studies of bottom‐contact TFTs show a very similar MO film morphology on the electrodes and in the channel for modified TFTs, whereas in the untreated samples the film has a higher roughness on the electrodes than in the channel. TFTs in top‐contact configuration with the polymer interface layer at the dielectric/semiconductor interface also show higher mobility compared to the reference MOTFTs which displays that the improved performance is due to the improved morphology of the MO film.  相似文献   

6.
Recent studies of the bias‐stress‐driven electrical instability of organic field‐effect transistors (OFETs) are reviewed. OFETs are operated under continuous gate and source/drain biases and these bias stresses degrade device performance. The principles underlying this bias instability are discussed, particularly the mechanisms of charge trapping. There are three main charge‐trapping sites: the semiconductor, the dielectric, and the semiconductor‐dielectric interface. The charge‐trapping phenomena in these three regions are analyzed with special attention to the microstructural dependence of bias instability. Finally, possibilities for future research in this field are presented. This critical review aims to enhance our insight into bias‐stress‐induced charge trapping in OFETs with the aim of minimizing operational instability.  相似文献   

7.
Si基有机光电探测器低阻欧姆电极制作   总被引:1,自引:0,他引:1  
在Si单晶表面真空沉积有机半导体材料苝四甲酸二酐(PTCDA)可形成有机/无机异质结。利用铟锡氧化物(ITO)沉积在PTCD表面作为光的入射窗口,在其表面溅射Al/Ni接触电极,在氢气保护气氛中经350℃,3分钟合金化,其比接触电阻ρs达5.2×10-5.cm2。利用α台阶仪,原子力显微镜,紫外可见分光光度计及x射线衍射仪,对其形成良好低阻欧姆电极的工艺条件及表面和界面进行了分析讨论。  相似文献   

8.
We have investigated electrical properties of vertical type organic transistor using dimethyldicyanoquinonediimine (DMDCNQI) as a n-type active layer. And also, the contact resistance Ro for charge injection from a metal electrode to an organic semiconductor layer was studied by transfer line method. The radiance of organic light emitting transistor (OLET) consisting of glass/ITO (drain)/PEDOT:PSS/MEH-PPV/DMDCNQI/Al (gate)/DMDCNQI/Au (source) can be effectively controlled by applying gate voltage like depletion mode.  相似文献   

9.
In recent years, organic electrochemical transistors (OECTs) have found applications in chemical and biological sensing and interfacing, neuromorphic computing, digital logic, and printed electronics. However, the incorporation of OECTs in practical electronic circuits is limited by the relative lack of control over their threshold voltage, which is important for controlling the power consumption and noise margin in complementary and unipolar circuits. Here, the threshold voltage of OECTs is precisely tuned over a range of more than 1 V by chemically controlling the electrochemical potential at the gate electrode. This threshold voltage tunability is exploited to prepare inverters and amplifiers with improved noise margin and gain, respectively. By coupling the gate electrode with an electrochemical oscillator, single‐transistor oscillators based on OECTs with dynamic time‐varying threshold voltages are prepared. This work highlights the importance of electrochemistry at the gate electrode in determining the electrical properties of OECTs, and opens a path toward the system‐level design of low‐power OECT‐based electronics.  相似文献   

10.
A wafer‐scale patterning method for solution‐processed graphene electrodes, named the transfer‐and‐reverse stamping method, is universally applicable for fabricating source/drain electrodes of n‐ and p‐type organic field‐effect transistors with excellent performance. The patterning method begins with transferring a highly uniform reduced graphene oxide thin film, which is pre‐prepared on a glass substrate, onto hydrophobic silanized (rigid/flexible) substrates. Patterns of the as‐prepared reduced graphene oxide films are then formed by modulating the surface energy of the films and selectively delaminating the films using an oxygen‐plasma‐treated elastomeric stamp with patterns. Reduced graphene oxide patterns with various sizes and shapes can be readily formed onto an entire wafer. Also, they can serve as the source/drain electrodes for benchmark n‐ and p‐type organic field‐effect transistors with enhanced performance, compared to those using conventional metal electrodes. These results demonstrate the general utility of this technique. Furthermore, this simple, inexpensive, and scalable electrode‐patterning‐technique leads to assembling organic complementary circuits onto a flexible substrate successfully.  相似文献   

11.
Organic electrochemical transistors (OECTs) have been the subject of intense research in recent years. To date, however, most of the reported OECTs rely entirely on p‐type (hole transport) operation, while electron transporting (n‐type) OECTs are rare. The combination of efficient and stable p‐type and n‐type OECTs would allow for the development of complementary circuits, dramatically advancing the sophistication of OECT‐based technologies. Poor stability in air and aqueous electrolyte media, low electron mobility, and/or a lack of electrochemical reversibility, of available high‐electron affinity conjugated polymers, has made the development of n‐type OECTs troublesome. Here, it is shown that ladder‐type polymers such as poly(benzimidazobenzophenanthroline) (BBL) can successfully work as stable and efficient n‐channel material for OECTs. These devices can be easily fabricated by means of facile spray‐coating techniques. BBL‐based OECTs show high transconductance (up to 9.7 mS) and excellent stability in ambient and aqueous media. It is demonstrated that BBL‐based n‐type OECTs can be successfully integrated with p‐type OECTs to form electrochemical complementary inverters. The latter show high gains and large worst‐case noise margin at a supply voltage below 0.6 V.  相似文献   

12.
Organic electrochemical transistors (OECTs) are highly attractive for applications ranging from circuit elements and neuromorphic devices to transducers for biological sensing, and the archetypal channel material is poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS. The operation of OECTs involves the doping and dedoping of a conjugated polymer due to ion intercalation under the application of a gate voltage. However, the challenge is the trade‐off in morphology for mixed conduction since good electronic charge transport requires a high degree of ordering among PEDOT chains, while efficient ion uptake and volumetric doping necessitates open and loose packing of the polymer chains. Ionic‐liquid‐doped PEDOT:PSS that overcomes this limitation is demonstrated. Ionic‐liquid‐doped OECTs show high transconductance, fast transient response, and high device stability over 3600 switching cycles. The OECTs are further capable of having good ion sensitivity and robust toward physical deformation. These findings pave the way for higher performance bioelectronics and flexible/wearable electronics.  相似文献   

13.
This paper reports our investigation of different source/drain (S/D) electrode materials in thin-film transistors (TFTs) based on an indium-gallium-zinc oxide (IGZO) semiconductor. Transfer length, contact resistance, channel conductance, and effective resistances between S/D electrodes and amorphous IGZO thin-film transistors were examined. Intrinsic TFT parameters were extracted by the transmission line method (TLM) using a series of TFTs with different channel lengths measured at a low drain voltage. The TFTs fabricated with Cu S/D electrodes showed the lowest contact resistance and transfer length indicating good ohmic characteristics, and good transfer characteristics with intrinsic field-effect mobility (μFE-i) of 10.0 cm2/Vs.  相似文献   

14.
The barrier to charge carrier injection across the semiconductor/electrode interface is a key parameter in the performance of organic transistors and optoelectronic devices, and the work function of the electrode material plays an important role in determining the size of this barrier. We present a new, chemical route for making metal surfaces with low work functions, by functionalizing gold surfaces with self‐assembled monolayers of n,n‐dialkyl dithiocarbamates. Ultraviolet photoemission spectroscopy measurements show that work functions of 3.2 eV ± 0.1 eV can be achieved using this surface modification. Electronic structure calculations reveal that this low work function is a result of the packing‐density, polarization along the N‐C bond, and charge rearrangement associated with chemisorption. We demonstrate that electrodes functionalized with these monolayers significantly improve the performance of organic thin‐film transistors and can potentially be employed in charge selective contacts for organic photovoltaics.  相似文献   

15.
Herein, a unique device architecture is proposed for fibrous organic transistors based on a double‐stranded assembly of electrode microfibers for electronic textile applications. A key feature of this work is that the semiconductor channel of the fiber transistor comprises a twist assembly of the source and drain electrode microfibers that are coated by an organic semiconductor. This architecture not only allows the channel dimension of the device to be readily controlled by varying the thickness of the semiconductor layer and the twisted length of the two electrode microfibers, but also passivates the device without affecting interconnections with other electrical components. It is found that the control of crystalline nanostructure of the semiconductor layer is critical for improving both the production yield of the device and the charge‐carrier transport in the device. The resulting fibrous organic transistors show a high output current of over ?5 mA at a low operation voltage of ?1.3 V and a good on/off current ratio of 105. The device performance is maintained after repeated bending deformation and washing with a strong detergent solution. Application of the fibrous organic transistors to switch current‐driven LED devices and detection of electrocardiography signals from a human body are demonstrated.  相似文献   

16.
We have studied charge injection across the metal/organic semiconductor interface in bottom-contact poly(3-hexylthiophene) (P3HT) field-effect transistors, with Au source and drain electrodes modified by self-assembled monolayers (SAMs) prior to active polymer deposition. By using the SAM to engineer the effective Au work function, we markedly affect the charge injection process. We systematically examine the contact resistivity and intrinsic channel mobility and show that chemically increasing the injecting electrode work function significantly improves hole injection relative to untreated Au electrodes.  相似文献   

17.
Thin insulating layers are used to modulate a depletion region at the source of a thin‐film transistor. Bottom contact, staggered‐electrode indium gallium zinc oxide transistors with a 3 nm Al2O3 layer between the semiconductor and Ni source/drain contacts, show behaviors typical of source‐gated transistors (SGTs): low saturation voltage (VD_SAT ≈ 3 V), change in VD_SAT with a gate voltage of only 0.12 V V?1, and flat saturated output characteristics (small dependence of drain current on drain voltage). The transistors show high tolerance to geometry: the saturated current changes only 0.15× for 2–50 µm channels and 2× for 9‐45 µm source‐gate overlaps. A higher than expected (5×) increase in drain current for a 30 K change in temperature, similar to Schottky‐contact SGTs, underlines a more complex device operation than previously theorized. Optimization for increasing intrinsic gain and reducing temperature effects is discussed. These devices complete the portfolio of contact‐controlled transistors, comprising devices with Schottky contacts, bulk barrier, or heterojunctions, and now, tunneling insulating layers. The findings should also apply to nanowire transistors, leading to new low‐power, robust design approaches as large‐scale fabrication techniques with sub‐nanometer control mature.  相似文献   

18.
The evolution in growth morphology and molecular orientation of n-type semiconducting alpha,omega-diperfluorohexyl-quaterthiophene (DFH-4T) on Au(111) is investigated by scanning tunneling microscopy and scanning tunneling spectroscopy as the film thickness is increased from one monolayer to multilayers. Monolayer-thick DFH-4T films are amorphous and morphologically featureless with a large pit density, whereas multilayer films exhibit drastically different terraced structures consisting of overlapping platelets. Large changes in DFH-4T molecular orientation are observed on transitioning from two to four monolayers. Parallel electrical characterization of top-versus-bottom contact configuration DFH-4T FETs with Au source/drain electrodes reveals greatly different mobilities (mu(TOP) = 1.1 +/- 0.2 10(-2) cm(2)V(-1)s(-1) versus mu(BOTTOM) = 2.3 +/- 0.5 10(-5) cm(2)V(-1)s(-1)) and contact resistances (R(C-TOP) = 4-12 MOmegacm vs R(C-BOTTOM) > 1 GOmegacm). This study provides important information on the organic semiconductor-source\drain electrode interfaces and explains why top-contact OFET devices typically have superior performance. By direct visualization, it demonstrates that the DFH-4T film growth transition from monolayer to multilayer on Au is accompanied by dramatic morphology and molecular orientation changes, starting from an amorphous, pitted, and disordered monolayer, to crystalline and smooth bi/tetralayers but with the molecules reoriented by 90 degrees . These chemisorption-derived inhomogenities at the contact-molecule interface and the large monolayer --> multilayer --> bulk microstructural changes are in accord with the large bottom-contact device resistance and poor OFET performance.  相似文献   

19.
A new type of nitrogen dioxide (NO2) gas sensor based on copper phthalocyanine (CuPc) thin film transistors (TFTs) with a simple, low‐cost UV–ozone (UVO)‐treated polymeric gate dielectric is reported here. The NO2 sensitivity of these TFTs with the dielectric surface UVO treatment is ≈400× greater for [NO2] = 30 ppm than for those without UVO treatment. Importantly, the sensitivity is ≈50× greater for [NO2] = 1 ppm with the UVO‐treated TFTs, and a limit of detection of ≈400 ppb is achieved with this sensing platform. The morphology, microstructure, and chemical composition of the gate dielectric and CuPc films are analyzed by atomic force microscopy, grazing incident X‐ray diffraction, X‐ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, revealing that the enhanced sensing performance originates from UVO‐derived hydroxylated species on the dielectric surface and not from chemical reactions between NO2 and the dielectric/semiconductor components. This work demonstrates that dielectric/semiconductor interface engineering is essential for readily manufacturable high‐performance TFT‐based gas sensors.  相似文献   

20.
Flexible fabric biosensors can find promising applications in wearable electronics. However, high‐performance fabric biosensors have been rarely reported due to many special requirements in device fabrication. Here, the preparation of organic electrochemical transistors (OECTs) on Nylon fibers is reported. By introducing metal/conductive polymer multilayer electrodes on the fibers, the OECTs show very stable performance during bending tests. The devices with functionalized gates are successfully used as various biosensors with high sensitivity and selectivity. The fiber‐based OECTs are woven together with cotton yarns successfully by using a conventional weaving machine, resulting in flexible and stretchable fabric biosensors with high performance. The fabric sensors show much more stable signals in the analysis of moving aqueous solutions than planar devices due to a capillary effect in fabrics. The fabric devices are integrated in a diaper and remotely operated by using a mobile phone, offering a unique platform for convenient wearable healthcare monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号