首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphdiyne is a new member of the family of carbon‐based nanomaterials that possess two types of carbon atoms, sp‐ and sp2‐hybridized carbon atoms. As a novel 2D carbon‐based nanomaterial with unique planar structure, such as uniformly distributed nanopores and large conjugated structure, graphdiyne has shown many fascinating properties in mechanics, electronics, and optics since it was first experimentally synthesized in 2010. Up to now, graphdiyne and its derivatives have been reported to be successfully applied in many areas, such as catalysis, energy, environment, and biomedicine, due to these excellent properties. Herein, the current research progress of graphdiyne‐based materials in biomedical fields is summarized, including biosensing, biological protection, cancer therapy, tissue engineering, etc. The advantages of graphdiyne and its derivatives are presented and compared with other carbon‐based materials. Considering the potential biomedical and clinical applications of graphdiyne‐based materials, the toxicity and biocompatibility are also discussed based on current studies. Finally, future perspectives and possible biomedical applications of graphdiyne‐based materials are also discussed.  相似文献   

2.
The development of carbon materials offers the hope for obtaining inexpensive and high‐performance alternatives to substitute noble‐metal catalysts for their sustainable application. Graphdiyne, the rising‐star carbon allotrope, is a big family with many members, and first realized the coexistence of sp‐ and sp2‐hybridized carbon atoms in a 2D planar structure. Different from the prevailing carbon materials, its nonuniform distribution in the electronic structure and wide tunability in bandgap show many possibilities and special inspirations to construct new‐concept metal‐free catalysts, and provide many opportunities for achieving a catalytic activity comparable with that of noble‐metal catalysts. Herein, the recent progress in synthetic methodologies, theoretical predictions, and experimental investigations of graphdiyne for metal‐free catalysts is systematically summarized. Some new perspectives of the opportunities and challenges in developing high‐performance graphdiyne‐based metal‐free catalysts are demonstrated.  相似文献   

3.
Abstract

We investigate the propagation of (2 + 1)D bright solitary waves in a saturable nonlinear medium perturbed with gain or loss. We find that in the presence of loss (gain) the amplitude and width of the (2 + 1)D bright solitary waves may both increase (decrease) with their product varying adiabatically during evolution. This is in contrast to the (1 + 1)D Kerr bright (dark) solitons or (2 + 1)D vortex solitons whose amplitude decreases (increases) at the same rate as the width increases (decreases), keeping their product unchanged with the propagation distance. For a very weak nonlinear saturation approaching Kerr nonlinearity, it is found that the amplitude and the width change at a rate faster than the (1 + 1)D Kerr bright and dark solitons, whereas their variation in highly saturable media is slower than the (1 + 1) or (2 + 1)D Kerr dark solitons. In a medium of moderate nonlinear saturation, the beam width and amplitude may vary in the way following that of high nonlinear saturation or weak nonlinear saturation or a combination of the two, depending on loss or gain and propagation distance.  相似文献   

4.
Traditional carbon materials have demonstrated immense potential in perovskite solar cells (PSCs) owing to their superior electrical properties and environmental stability. Graphdiyne (GDY), as an emerging carbon allotrope, features uniformly distributed pores, endless design flexibility, and unique electronic character compared with traditional carbon materials. Herein, graphdiyne is introduced into the upper part of the perovskite (CH3NH3PbI3) layer by utilizing a GDY‐containing antisolvent during the one‐step synthesis of perovskite. Intriguingly, GDY plays an essential role in hole accumulation and transportation because of its higher Fermi level than perovskite. As a result, the automatic separation of photogenerated carriers inside the perovskite film is achieved. Furthermore, the Schottky barrier formed on the interface between perovskite and GDY guarantees the unidirectional hole transport from perovskite to GDY, thereby benefiting further extraction to the hole transport layer. Consequently, GDY‐modified perovskite‐based planar PSCs exhibit a boosted Jsc of 24.21 mA cm?2 and up to 19.6% power conversion efficiency owing to the increased efficient light utilization and charge extraction. The device with GDY modification exhibits less than 10% shrinkage after a month in ambience. Overall, this work demonstrates an easy method for the utilization of GDY to boost the charge extraction and environmental stability in PSCs.  相似文献   

5.
The oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting are major energy and chemical conversion efforts. Progress in electrocatalytic reactions have shown that the future is limitless in many fields. However, it is urgent to develop efficient electrocatalysts. Here, the first graphdiyne‐supported efficient and bifunctional electrocatalyst is reported using 3D graphdiyne foam as scaffolds, and NiCo2S4 nanowires as building blocks (NiCo2S4 NW/GDF). NiCo2S4 NW/GDF exhibits outstanding catalytic activity and stability toward both OER and HER, as well as overall water splitting in alkaline media. Remarkably, it enables a high‐performance alkaline water electrolyzer with 10 and 20 mA cm?2 at very low cell voltages of 1.53 and 1.56 V, respectively, and remarkable stability over 140 h of continuous electrolysis operation at 20 mA cm?2. The results indicate that this catalyst has a bifunction that overcomes all reported bifunctional, nonprecious‐metal‐based ones.  相似文献   

6.
Tin diselenide (SnSe2) nanosheets as novel 2D layered materials have excellent optical properties with many promising application prospects, such as photoelectric detectors, nonlinear optics, infrared photoelectric devices, and ultrafast photonics. Among them, ultrafast photonics has attracted much attention due to its enormous advantages; for instance, extremely fast pulse, strong peak power, and narrow bandwidth. In this work, SnSe2 nanosheets are fabricated by using solvothermal treatment, and the characteristics of SnSe2 are systemically investigated. In addition, the solution of SnSe2 nanosheets is successfully prepared as a fiber‐based saturable absorber by utilizing the evanescent field effect, which can bear a high pump power. 31st‐order subpicosecond harmonic mode locking is generated in an Er‐doped fiber laser, corresponding to the maximum repetition rate of 257.3 MHz and pulse duration of 887 fs. The results show that SnSe2 can be used as an excellent nonlinear photonic device in many fields, such as frequency comb, lasers, photodetectors, etc.  相似文献   

7.
MXenes comprise a new class of 2D transition metal carbides, nitrides, and carbonitrides that exhibit unique light–matter interactions. Recently, 2D Ti3CNTx (Tx represents functional groups such as ? OH and ? F) was found to exhibit nonlinear saturable absorption (SA) or increased transmittance at higher light fluences, which is useful for mode locking in fiber‐based femtosecond lasers. However, the fundamental origin and thickness dependence of SA behavior in MXenes remain to be understood. 2D Ti3C2Tx thin films of different thicknesses are fabricated using an interfacial film formation technique to systematically study their nonlinear optical properties. Using the open aperture Z‐scan method, it is found that the SA behavior in Ti3C2Tx MXene arises from plasmon‐induced increase in the ground state absorption at photon energies above the threshold for free carrier oscillations. The saturation fluence and modulation depth of Ti3C2Tx MXene is observed to be dependent on the film thickness. Unlike other 2D materials, Ti3C2Tx is found to show higher threshold for light‐induced damage with up to 50% increase in nonlinear transmittance. Lastly, building on the SA behavior of Ti3C2Tx MXenes, a Ti3C2Tx MXene‐based photonic diode that breaks time‐reversal symmetry to achieve nonreciprocal transmission of nanosecond laser pulses is demonstrated.  相似文献   

8.
Two‐dimensional (2D) perovskites have proved to be promising semiconductors for photovoltaics, photonics, and optoelectronics. Here, a strategy is presented toward the realization of highly efficient, sub‐bandgap photodetection by employing excitonic effects in 2D Ruddlesden–Popper‐type halide perovskites (RPPs). On near resonance with 2D excitons, layered RPPs exhibit degenerate two‐photon absorption (D‐2PA) coefficients as giant as 0.2–0.64 cm MW?1. 2D RPP‐based sub‐bandgap photodetectors show excellent detection performance in the near‐infrared (NIR): a two‐photon‐generated current responsivity up to 1.2 × 104 cm2 W?2 s?1, two orders of magnitude greater than InAsSbP‐pin photodiodes; and a dark current as low as 2 pA at room temperature. More intriguingly, layered‐RPP detectors are highly sensitive to the light polarization of incoming photons, showing a considerable anisotropy in their D‐2PA coefficients (β[001][011] = 2.4, 70% larger than the ratios reported for zinc‐blende semiconductors). By controlling the thickness of the inorganic quantum well, it is found that layered RPPs of (C4H9NH3)2(CH3NH3)Pb2I7 can be utilized for three‐photon photodetection in the NIR region.  相似文献   

9.
Layered 2D graphene oxide (GO) films are integrated with micro‐ring resonators (MRRs) to experimentally demonstrate enhanced nonlinear optics. Both uniformly coated (1?5 layers) and patterned (10?50 layers) GO films are integrated on complementary‐metal‐oxide‐semiconductor (CMOS)‐compatible doped silica MRRs using a large‐area, transfer‐free, layer‐by‐layer GO coating method with precise control of the film thickness. The patterned devices further employ photolithography and lift‐off processes to enable precise control of the film placement and coating length. Four‐wave‐mixing (FWM) measurements for different pump powers and resonant wavelengths show a significant improvement in efficiency of ≈7.6 dB for a uniformly coated device with 1 GO layer and ≈10.3 dB for a patterned device with 50 GO layers. The measurements agree well with theory, with the enhancement in FWM efficiency resulting from the high Kerr nonlinearity and low loss of the GO films combined with the strong light–matter interaction within the MRRs. The dependence of GO's third‐order nonlinearity on layer number and pump power is also extracted from the FWM measurements, revealing interesting physical insights about the evolution of the GO films from 2D monolayers to quasi bulk‐like behavior. These results confirm the high nonlinear optical performance of integrated photonic resonators incorporated with 2D layered GO films.  相似文献   

10.
Graphdiyne (GDY) is a fascinating graphene-like 2D carbon allotrope comprising sp and sp2 hybridized carbon atoms. However, GDY materials synthesized by solution-phase methods normally come as thick and porous films or amorphous powders with severely disordered stacking modes that obstruct macroscopic applications. Here, a facile and scalable synthesis of ultrathin holey graphdiyne (HGDY) nanosheets is reported via palladium/copper co-catalyzed homocoupling of 1,3,5-triethynylbenzene. The resulting freestanding 2D HGDY self-assembles into 3D foam-like networks which can in situ anchor clusters of palladium atoms on their surfaces. The Pd/HGDY hybrids exhibit high electrocatalytic activity and stability for the oxygen reduction reaction which outperforms that of Pt/C benchmark. Based on the ultrathin graphene-like sheets and their unique 3D interconnected macrostructures, Pd/HGDY holds great promise for practical electrochemical catalysis and energy-related applications.  相似文献   

11.
Abstract

We discuss a model of a cavity filled with a passive nonlinear ?Kerr‘ medium and periodically kicked by a series of ultra-short laser pulses. The nonlinear medium is described by the (2q ? 1)th nonlinearity X (2q?1). We find analytical formulas describing the field states inside the cavity. We show that such a system can produce, depending on the order of the nonlinearity, superpositions of several Fock states with the small photon numbers (0,1; 0,1,2; etc). In particular, the one-photon state can be approached during the evolution of the system with X (3) nonlinearity provided the cavity losses are negligible. The purity of states generated in this process, however, can be seriously degraded by the cavity damping. We perform numerical calculations to validate our analytical results.  相似文献   

12.
Photo‐electrochemical water splitting is a very promising and environmentally friendly route for the conversion of solar energy into hydrogen. However, the solar‐to‐H2 conversion efficiency is still very low due to rapid bulk recombination of charge carriers. Here, a photonic nano‐architecture is developed to improve charge carrier generation and separation by manipulating and confining light absorption in a visible‐light‐active photoanode constructed from BiVO4 photonic crystal and plasmonic nanostructures. Synergistic effects of photonic crystal stop bands and plasmonic absorption are observed to operate in this photonic nanostructure. Within the scaffold of an inverse opal photonic crystal, the surface plasmon resonance is significantly enhanced by the photonic Bragg resonance. Nanophotonic photoanodes show AM 1.5 photocurrent densities of 3.1 ± 0.1 mA cm?2 at 1.23 V versus RHE, which is among the highest for oxide‐based photoanodes and over 4 times higher than the unstructured planar photoanode.  相似文献   

13.
We propose an As2Se3-based highly nonlinear photonic quasi-crystal fiber with dual zero-dispersion wavelengths (ZDWs). Using a full-vector finite element method, the proposed fiber is optimized to obtain high nonlinear coefficient, low confinement loss and two zero-dispersion points by optimizing the structure parameters. Numerical results demonstrate that the proposed photonic quasi-crystal fiber (PQF) has dual ZDWs and the nonlinear coefficient up to 2600 W?1 km?1 within the wavelength range from 2 to 5.5 μm. Due to the introduction of the large air holes in the third ring of the proposed fiber, the ability of confining the fundamental mode field can be improved effectively and thus the low confinement loss can be obtained. The proposed PQF with high nonlinearity and dual ZDWs will have a number of potential applications in four-wave mixing, super-continuum generation, and higher-order dispersion effects.  相似文献   

14.
A numerical scheme is presented to solve the nonlinear Helmholtz (NLH) equation modeling second-harmonic generation (SHG) in photonic bandgap material doped with a nonlinear χ((2)) effect and the NLH equation modeling wave propagation in Kerr type gratings with a nonlinear χ((3)) effect in the one-dimensional case. Both of these nonlinear phenomena arise as a result of the combination of high electromagnetic mode density and nonlinear reaction from the medium. When the mode intensity of the incident wave is significantly strong, which makes the nonlinear effect non-negligible, numerical methods based on the linearization of the essentially nonlinear problem will become inadequate. In this work, a robust, stable numerical scheme is designed to simulate the NLH equations with strong nonlinearity.  相似文献   

15.
Carbon nanomaterials exhibit extraordinary mechanical and electronic properties desirable for future technologies. Beyond the popular sp2‐scaffolds, there is growing interest in their graphdiyne‐related counterparts incorporating both sp2 and sp bonding in a regular scheme. Herein, we introduce carbonitrile‐functionalized graphdiyne nanowires, as a novel conjugated, one‐dimensional (1D) carbon nanomaterial systematically combining the virtues of covalent coupling and supramolecular concepts that are fabricated by on‐surface synthesis. Specifically, a terphenylene backbone is extended with reactive terminal alkyne and polar carbonitrile (CN) moieties providing the required functionalities. It is demonstrated that the CN functionalization enables highly selective alkyne homocoupling forming polymer strands and gives rise to mutual lateral attraction entailing room‐temperature stable double‐stranded assemblies. By exploiting the templating effect of the vicinal Ag(455) surface, 40 nm long semiconducting nanowires are obtained and the first experimental assessment of their electronic band structure is achieved by angle‐resolved photoemission spectroscopy indicating an effective mass below 0.1m0 for the top of the highest occupied band. Via molecular manipulation it is showcased that the novel oligomer exhibits extreme mechanical flexibility and opens unexplored ways of information encoding in clearly distinguishable CN‐phenyl trans–cis species. Thus, conformational data storage with density of 0.36 bit nm?2 and temperature stability beyond 150 K comes in reach.  相似文献   

16.
2D wide‐bandgap semiconductors demonstrate great potential in fabricating solar‐blind ultraviolet (SBUV) photodetectors. However, the low responsivity of 2D solar‐blind photodetectors still limits their practical applications. Here, high‐responsivity solar‐blind photodetectors are achieved based on 2D bismuth oxychloride (BiOCl) flakes. The 2D BiOCl photodetectors exhibit a responsivity up to 35.7 A W?1 and a specific detectivity of 2.2 × 1010 Jones under 250 nm illumination with 17.8 µW cm?2 power density. In particular, the enhanced photodetective performances are demonstrated in BiOCl photodetectors with increasing ambient temperature. Surprisingly, their responsivity can reach 2060 A W?1 at 450 K under solar‐blind light illumination, maybe owing to the formation of defective BiOCl grains evidenced by in situ transmission electron microscopy. The high responsivity throughout the solar‐blind range indicates that 2D BiOCl is a promising candidate for SBUV detection.  相似文献   

17.
The problem of light source always prevents silicon‐based photonics from achieving a final integration. Although some optical pump lasers have been reported in recent years, an electrical pumping laser is considered as the ultimate solution. To fabricate a Si‐based laser, there are some crucial obstacles that need to be solved such as difficulties in material epitaxy, light absorption by metal electrodes, and compatibility with the existing complementary metal–oxide–semiconductor transistor process. Here, a multilayer graphene and GeSn/Ge quantum well (QW) heterostructure is designed and fabricated as a Si‐based light source. Specially designed Ge0.9Sn0.1/Ge QWs are used as active layer, which achieves a photoluminescence (PL) peak at 2050 nm. Graphene, which has a high transmittance for all bands of light, lessens the burden of growing thick cladding layer and perfectly breaks the deadlock of light disappearance in metal contacts. The electroluminescence (EL) spectrum of the device is achieved at a peak of 2100 nm under an injection current density of 100 A cm?2. Both the PL and EL measurements show the heterostructure has good performance as a short‐wave infrared (SWIR) light source. Therefore, the results provides a good alternative for the light source in silicon‐based photonics.  相似文献   

18.
Xiong C  Pernice WH  Tang HX 《Nano letters》2012,12(7):3562-3568
Photonic miniaturization requires seamless integration of linear and nonlinear optical components to achieve passive and active functions simultaneously. Among the available material systems, silicon photonics holds immense promise for optical signal processing and on-chip optical networks. However, silicon is limited to wavelengths above 1.1 μm and does not provide the desired lowest order optical nonlinearity for active signal processing. Here we report the integration of aluminum nitride (AlN) films on silicon substrates to bring active functionalities to chip-scale photonics. Using CMOS-compatible sputtered thin films we fabricate AlN-on-insulator waveguides that exhibit low propagation loss (0.6 dB/cm). Exploiting AlN's inherent Pockels effect we demonstrate electro-optic modulation up to 4.5 Gb/s with very low energy consumption (down to 10 fJ/bit). The ultrawide transparency window of AlN devices also enables high speed modulation at visible wavelengths. Our low cost, wideband, carrier-free photonic circuits hold promise for ultralow power and high-speed signal processing at the microprocessor chip level.  相似文献   

19.
In situ weaving an all‐carbon graphdiyne coat on a silicon anode is scalably realized under ultralow temperature (25 °C). This economical strategy not only constructs 3D all‐carbon mechanical and conductive networks with reasonable voids for the silicon anode at one time but also simultaneously forms a robust interfacial contact among the electrode components. The intractable problems of the disintegrations in the mechanical and conductive networks and the interfacial contact caused by repeated volume variations during cycling are effectively restrained. The as‐prepared electrode demostrates the advantages of silicon regarding capacity (4122 mA h g?1 at 0.2 A g?1) with robust capacity retention (1503 mA h g?1) after 1450 cycles at 2 A g?1, and a commercial‐level areal capacity up to 4.72 mA h cm?2 can be readily approached. Furthermore, this method shows great promises in solving the key problems in other high‐energy‐density anodes.  相似文献   

20.
β‐Graphdiyne (β‐GDY) is a member of 2D graphyne family with zero band gap, and is a promising material with potential applications in energy storage, organic electronics, etc. However, the synthesis of β‐GDY has not been realized yet, and the measurement of its intrinsic properties remains elusive. In this work, β‐GDY‐containing thin film is successfully synthesized on copper foil using modified Glaser–Hay coupling reaction with tetraethynylethene as precursor. The as‐grown carbon film has a smooth surface and is continuous and uniform. Electrical measurements reveal the conductivity of 3.47 × 10?6 S m?1 and the work function of 5.22 eV. TiO2@β‐GDY nanocomposite is then prepared and presented with an enhancement of photocatalytic ability compared to pure TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号