首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium–sulfur (Li–S) batteries have been disclosed as one of the most promising energy storage systems. However, the low utilization of sulfur, the detrimental shuttling behavior of polysulfides, and the sluggish kinetics in electrochemical processes, severely impede their application. Herein, 3D hierarchical nitrogen‐doped carbon nanosheets/molybdenum phosphide nanocrystal hollow nanospheres (MoP@C/N HCSs) are introduced to Li–S batteries via decorating commercial separators to inhibit polysulfides diffusion. It acts not only as a polysulfides immobilizer to provide strong physical trapping and chemical anchoring toward polysulfides, but also as an electrocatalyst to accelerate the kinetics of the polysulfides redox reaction, and to lower the Li2S nucleation/dissolution interfacial energy barrier and self‐discharge capacity loss in working Li–S batteries, simultaneously. As a result, the Li–S batteries with MoP@C/N HCS‐modified separators show superior rate capability (920 mAh g?1 at 2 C) and stable cycling life with only 0.04% capacity decay per cycle over 500 cycles at 1 C with nearly 100% Coulombic efficiency. Furthermore, the Li–S battery can achieve a high area capacity of 5.1 mAh cm?2 with satisfied capacity retention when the cathode loading reaches 5.5 mg cm?2. This work offers a brand new guidance for rational separator design into the energy chemistry of high‐stable Li–S batteries.  相似文献   

2.
The practical application of lithium–sulfur (Li–S) batteries is hindered by the “shuttle” of lithium polysulfides (LiPS) and sluggish Li–S kinetics issues. Herein, a synergistic strategy combining mesoporous architecture design and defect engineering is proposed to synthesize multifunctional defective 3D ordered mesoporous cobalt sulfide (3DOM N‐Co9S8?x) to address the shuttling and sluggish reaction kinetics of polysulfide in Li–S batteries. The unique 3DOM design provides abundant voids for sulfur storage and enlarged active interfaces that reduce electron/ion diffusion pathways. Meanwhile, X‐ray absorption spectroscopy shows that the surface defect engineering tunes the CoS4 tetrahedra to CoS6 octahedra on Co9S8, endowing abundance of S vacancies on the Co9S8 octahedral sites. The ever‐increasing S vacancies over the course of electrochemical process further promotes the chemical trapping of LiPS and its conversion kinetics, rendering fast and durable Li–S chemistry. Benefiting from these features, the as‐developed 3DOM N‐Co9S8?x/S cathode delivers high areal capacity, superb rate capability, and excellent cyclic stability with ultralow capacity fading rate under raised sulfur loading and low electrolyte content. This design strategy promotes the development of practically viable Li–S batteries and sheds lights on the material engineering in related energy storage application.  相似文献   

3.
The development of lithium–sulfur (Li–S) batteries is dogged by the rapid capacity decay arising from polysulfide dissolution and diffusion in organic electrolytes. To solve this critical issue, a praline‐like flexible interlayer consisting of high‐loading titanium oxide (TiO2) nanoparticles and relatively long carbon nanofibers is fabricated. TiO2 nanoparticles with a size gradient occupy both the external and internal of carbon fiber and serve as anchors that allow the chemical adsorption of polysulfides through a conductive nanoarchitecture. The porous conductive carbon backbone helps in the physical absorption of polysulfides and provides redox reaction sites to allow the polysulfides to be reused. More importantly, it offers enough mechanical strength to support a high load TiO2 nanoparticle (79 wt%) that maximizes their chemical role, and can accommodate the large volume changes. Significant enhancement in cycle stability and rate capability is achieved for a readily available sulfur/multi‐walled carbon nanotube composite cathode simply by incorporating this hierarchically nanostructured interlayer. The design and synthesis of interlayers by in situ integration of metal oxides and carbon fibers via a simple route offers the potential to advance Li–S batteries for practical applications in the future.  相似文献   

4.
Lithium–sulfur (Li–S) batteries have attracted much attention in the field of electrochemical energy storage due to their high energy density and low cost. However, the “shuttle effect” of the sulfur cathode, resulting in poor cyclic performance, is a big barrier for the development of Li–S batteries. Herein, a novel sulfur cathode integrating sulfur, flexible carbon cloth, and metal–organic framework (MOF)‐derived N‐doped carbon nanoarrays with embedded CoP (CC@CoP/C) is designed. These unique flexible nanoarrays with embedded polar CoP nanoparticles not only offer enough voids for volume expansion to maintain the structural stability during the electrochemical process, but also promote the physical encapsulation and chemical entrapment of all sulfur species. Such designed CC@CoP/C cathodes with synergistic confinement (physical adsorption and chemical interactions) for soluble intermediate lithium polysulfides possess high sulfur loadings (as high as 4.17 mg cm–2) and exhibit large specific capacities at different C‐rates. Specially, an outstanding long‐term cycling performance can be reached. For example, an ultralow decay of 0.016% per cycle during the whole 600 cycles at a high current density of 2C is displayed. The current work provides a promising design strategy for high‐energy‐density Li–S batteries.  相似文献   

5.
Sulfur cathodes have become appealing for rechargeable batteries because of their high theoretical capacity (1675 mA h g?1). However, the conventional cathode configuration borrowed from lithium‐ion batteries may not allow the pure sulfur cathode to put its unique materials chemistry to good use. The solid(sulfur)–liquid(polysulfides)–solid(sulfides) phase transitions generate polysulfide intermediates that are soluble in the commonly used organic solvents in Li–S cells. The resulting severe polysulfide diffusion and the irreversible active‐material loss have been hampering the development of Li–S batteries for years. The present study presents a robust, ultra‐tough, flexible cathode with the active‐material fillings encapsulated between two buckypapers (B), designated as buckypaper/sulfur/buckypaper (B/S/B) cathodes, that suppresses the irreversible polysulfide diffusion to the anode and offers excellent electrochemical reversibility with a low capacity fade rate of 0.06% per cycle after 400 cycles. Engineering enhancements demonstrate that the B/S/B cathodes represent a facile approach for the development of high‐performance sulfur electrodes with a high areal capacity of 5.1 mA h cm?2, which increases further to approach 7 mA h cm?2 on coupling with carbon‐coated separators.  相似文献   

6.
Lithium–sulfur (Li–S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms‐doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li–S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole–dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong‐couple effect toward Li2Sx, the principles for rational design of doped carbon scaffolds in Li–S batteries to achieve a strong electrostatic dipole–dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides.  相似文献   

7.
The sulfur content in carbon–sulfur hybrid using the melt‐diffusion method is normally lower than 70 wt%, which greatly decreases the energy density of the cathode in lithium–sulfur (Li‐S) batteries. Here, a scalable method inspired by the commercialized production of Na2S is used to prepare a hierarchical porous carbon–sulfur hybrid (denoted HPC‐S) with high sulfur content (≈85 wt%). The HPC‐S is characterized by the structure of sulfur nanodots naturally embedded in a 3D carbon network. The strategy uses Na2SO4 as the starting material, which serves not only as the sulfur precursor but also as a salt template for the formation of the 3D carbon network. The HPC‐S cathode with such a high sulfur content shows excellent rate performance and cycling stability in Li–S batteries because of the sulfur nanoparticles, the unique carbon framework, and the strong interaction between them. The production method can also be readily scaled up and used in practical Li–S battery applications.  相似文献   

8.
Lithium metal–sulfur (Li–S) batteries are attracting broad interest because of their high capacity. However, the batteries experience the polysulfide shuttle effect in cathode and dendrite growth in the Li metal anode. Herein, a bifunctional and tunable mesoporous carbon sphere (MCS) that simultaneously boosts the performance of the sulfur cathode and the Li anode is designed. The MCS homogenizes the flux of Li ions and inhibits the growth of Li dendrites due to its honeycomb structure with high surface area and abundance of nitrogen sites. The Li@MCS cell exhibits a small overpotential of 29 mV and long cycling performance of 350 h under the current density of 1 mA cm‐2. Upon covering one layer of amorphous carbon on the MCS (CMCS), an individual carbon cage is able to encapsulate sulfur inside and reduce the polysulfide shuttle, which improves the cycling stability of the Li–S battery. As a result, the S@CMCS has a maximum capacity of 411 mAh g‐1 for 200 cycles at a current density of 3350 mA g‐1. Based on the excellent performance, the full Li–S cell assembled with Li@MCS anode and S@CMCS cathode shows much higher capacity than a cell assembled with Li@Cu anode and S@CMCS cathode.  相似文献   

9.
Lithium–sulfur (Li–S) batteries have been considered as one of the most promising energy storage systems owing to their high theoretical capacity and energy density. However, their commercial applications are obstructed by sluggish reaction kinetics and rapid capacity degradation mainly caused by polysulfide shuttling. Herein, the first attempt to utilize a highly conductive metal–organic framework (MOF) of Ni3(HITP)2 graphene analogue as the sulfur host material to trap and transform polysulfides for high‐performance Li–S batteries is made. Besides, the traditional conductive additive acetylene black is replaced by carbon nanotubes to construct matrix conduction networks for triggering the rate and cycling performance of the active cathode. As a result, the S@Ni3(HITP)2 with sulfur content of 65.5 wt% shows excellent sulfur utilization, rate performance, and cyclic durability. It delivers a high initial capacity of 1302.9 mAh g?1 and good capacity retention of 848.9 mAh g?1 after 100 cycles at 0.2 C. Highly reversible discharge capacities of 807.4 and 629.6 mAh g?1 are obtained at 0.5 and 1 C for 150 and 300 cycles, respectively. Such kinds of pristine MOFs with high conductivity and abundant polar sites reveal broad promising prospect for application in the field of high‐performance Li–S batteries.  相似文献   

10.
The shuttle effect of soluble lithium polysulfides (LiPSs) leads to the rapid decay of sulfur cathode, severely hindering the practical applications of lithium‐sulfur (Li‐S) batteries. To this point, a covalent‐organic framework (COF) with proper cationic sites, which can be utilized as the cathode host of high‐performance Li–S batteries, is reported. The chemical sulfur anchoring within micropores effectively suppresses the dissolution of LiPSs into the electrolyte. During the discharge step, the cationic sites can accept electrons from anode and deliver them to polysulfides to facilitate the polysulfides' disintegration. Meanwhile, the cationic sites can receive electrons from polysulfides and then send them to the anode during the charge process, which promotes the polysulfides oxidation. Thus, both experiments and computational modeling show that the cationic COF can effectively inhibit the shuttle effect of LiPSs and improve the batteries' performances. Compared with electrically neutral COFs, the cationic COF‐based batteries show much better cycling stability even at high current density, for instance, a high specific capacity of 468 mA h g?1 is retained after 300 cycles at a current density of 4.0 C.  相似文献   

11.
Metal organic frameworks (MOFs)‐derived porous carbon is proposed as a promising candidate to develop novel, tailorable structures as polysulfides immobilizers for lithium–sulfur batteries because of their high‐efficiency electron conductive networks, open ion channels, and abundant central ions that can store a large amount of sulfur and trap the easily soluble polysulfides. However, most central ions in MOFs‐derived carbon framework are encapsulated in the carbon matrix so that their exposures as active sites to adsorb polysulfides are limited. To resolve this issue, highly dispersed TiO2 nanoparticles are anchored into the cobalt‐containing carbon polyhedras that are converted from ZIF‐67. Such a type of TiO2 and Co nanoparticles‐decorated carbon polyhedras (C? Co/TiO2) provide more exposed active sites and much stronger chemical trapping for polysulfides, hence improving the sulfur utilization and enhancing reaction kinetics of sulfur‐containing cathode simultaneously. The sulfur‐containing carbon polyhedras decorated with TiO2 nanoparticles (S@C? Co/TiO2) show a significantly improved cycling stability and rate capability, and deliver a discharge capacity of 32.9% higher than that of TiO2‐free S@C? Co cathode at 837.5 mA g?1 after 200 cycles.  相似文献   

12.
Hollow nanostructures with intricate interior and catalytic effects hold great promise for the construction of advanced lithium–sulfur batteries. Herein, a double‐shelled hollow polyhedron with inlaid cobalt nanoparticles encapsulated by nitrogen‐doped carbon (Co/NC) nanodots (Co‐NC@Co9S8/NPC) is reported, which is acquired by using imidazolium‐based ionic‐polymer‐encapsulated zeolitic imidazolate framework‐67 as a core‐shelled precursor. The Co/NC nanodots promote redox kinetics and chemical adsorbability toward polysulfides, while the interconnected double shells serve as a nanoscale electrochemical reaction chamber, which effectively suppresses the polysulfide shuttling and accelerates ion/electron transport. Benefiting from structural engineering and reaction kinetics modulation, the Co‐NC@Co9S8/NPC‐S electrode exhibits high cycling stability with a low capacity decay of 0.011% per cycle within 2000 cycles at 2 C. The electrode still shows high rate performance and cyclability over 500 cycles even in the case of high sulfur loading of 4.5 mg cm?2 and 75 wt% sulfur content. This work provides one type of new hollow nanoarchitecture for the development of advanced Li–S batteries and other energy storage systems.  相似文献   

13.
Lithium–sulfur (Li–S) batteries are recognized as promising candidates for next-generation electrochemical energy storage systems owing to their high energy density and cost-effective raw materials. However, the sluggish multielectron sulfur redox reactions are the root cause of most of the issues for Li–S batteries. Herein, a high-efficiency CoSe electrocatalyst with hierarchical porous nanopolyhedron architecture (CS@HPP) derived from a metal–organic framework is presented as the sulfur host for Li–S batteries. The CS@HPP with high crystal quality and abundant reaction active sites can catalytically accelerate capture/diffusion of polysulfides and precipitation/decomposition of Li2S. Thus, the CS@HPP sulfur cathode exhibits an excellent capacity of 1634.9 mAh g−1, high rate performance, and a long cycle life with a low capacity decay of 0.04% per cycle over 1200 cycles. CoSe nanopolyhedrons are further fabricated on a carbon cloth framework (CC@CS@HPP) to unfold the electrocatalytic activity by its high electrical conductivity and large surface area. A freestanding CC@CS@HPP sulfur cathode with sulfur loading of 8.1 mg cm−2 delivers a high areal capacity of 8.1 mAh cm−2 under a lean electrolyte. This work will enlighten the rational design of structure–catalysis engineering of transition-metal-based nanomaterials for diverse applications.  相似文献   

14.
Lithium–sulfur (Li–S) batteries are considered to be one of the most promising candidate systems for next-generation electrochemical energy storage. The major challenge of this system is the polysulfide shuttle, which results in poor cycling efficiency. In this work, a highly N-doped carbon/graphene (NC/G) sheet is designed as a sulfur host, which combines the merits of abundant N active sites and high electrical conductivity to achieve in situ anchoring–conversion of lithium polysulfides (LiPSs). Such a host not only has strong binding with LiPSs but also promotes redox kinetics, which are revealed by both experimental investigations and theoretical studies. The sulfur cathode based on the NC/G host exhibits a high initial capacity of 1380 mA h g−1 and a superior cycle stability with a low capacity decay of 0.037% per cycle within 500 cycles at 2 C. Steady areal capacity with a high sulfur loading (5.6 mg cm−2) is also attained even without the addition of LiNO3 in the electrolyte. This work proposes and illustrates the importance of in situ anchoring–conversion of LiPSs, offering a new strategy to design multifunctional sulfur hosts for high-performance Li–S batteries.  相似文献   

15.
Applications of room-temperature–sodium sulfur (RT-Na/S) batteries are currently impeded by the insulating nature of sulfur, the slow redox kinetics of sulfur with sodium, and the dissolution and migration of sodium polysulfides. Herein, a novel micrometer-sized hierarchical S cathode supported by FeS2 electrocatalyst, which is grown in situ in well-confined carbon nanocage assemblies, is presented. The hierarchical carbon matrix can provide multiple physical entrapment to polysulfides, and the FeS2 nanograins exhibit a low Na-ion diffusion barrier, strong binding energy, and high affinity for sodium polysulfides. Their combination makes it an ideal sulfur host to immobilize the polysulfides and achieve reversible conversion of polysulfides toward Na2S. Importantly, the hierarchical S cathode is suitable for large-scale production via the inexpensive and green spray-drying method. The porous hierarchical S cathode offers a high sulfur content of 65.5 wt%, and can deliver high reversible capacity (524 mAh g−1 over 300 cycles at 0.1 A g−1) and outstanding rate capability (395 mAh g−1 at 1 A g−1 for 850 cycles), holding great promise for both scientific research and real application.  相似文献   

16.
The practical application of lithium–sulfur batteries (LSBs) is hindered by their poor cycle life, which stems mainly from the “redox shuttle reactions” of dissolved polysulfides. To develop a high‐performance cathode for LSBs, encapsulation of polysulfides with a blocking layer is potentially straightforward. Herein, a novel strategy is reported encapsulate sulfur and the electrolyte together in porous carbon spheres by using a solid electrolyte interface (SEI) that can selectively sieve Li+ ions while efficiently avoiding polysulfide accumulation and suppressing undesired polysulfide migration. This strategy is simple, straightforward, and effective. The carbon/sulfur cathode only needs to be cycled a few times within a voltage window of 0.3–1.0 V to form such a smart SEI, allowing the resulting cathode to exhibit superior stability extending 600 cycles. This strategy can be combined with other existing advanced sulfur cathode designs to improve the overall performance of LSBs.  相似文献   

17.
The compact sulfur cathodes with high sulfur content and high sulfur loading are crucial to promise high energy density of lithium–sulfur (Li–S) batteries. However, some daunting problems, such as low sulfur utilization efficiency, serious polysulfides shuttling, and poor rate performance, are usually accompanied during practical deployment. The sulfur hosts play key roles. Herein, the carbon-free sulfur host composed of vanadium-doped molybdenum disulfide (VMS) nanosheets is reported. Benefiting from the basal plane activation of molybdenum disulfide and structural advantage of VMS, high stacking density of sulfur cathode is allowed for high areal and volumetric capacities of the electrodes together with the effective suppression of polysulfides shuttling and the expedited redox kinetics of sulfur species during cycling. The resultant electrode with high sulfur content of 89 wt.% and high sulfur loading of 7.2 mg cm−2 achieves high gravimetric capacity of 900.9 mAh g−1, the areal capacity of 6.48 mAh cm−2, and volumetric capacity of 940 mAh cm−3 at 0.5 C. The electrochemical performance can rival with the state-of-the-art those in the reported Li–S batteries. This work provides methodology guidance for the development of the cathode materials to achieve high-energy-density and long-life Li–S batteries.  相似文献   

18.
The polysulfide shuttle effect and sluggish reaction kinetics hamper the practical applications of lithium–sulfur (Li–S) batteries. Incorporating a functional interlayer to trapping and binding polysulfides has been found effective to block polysulfide migration. Furthermore, surface chemistry at soluble polysulfides/electrolyte interface is a crucial step for Li–S battery in which stable cycling depends on adsorption and reutilization of blocked polysulfides in the electrolyte. A multifunctional catalytic interface composed of niobium nitride/N‐doped graphene (NbN/NG) along the soluble polysulfides/electrolyte is designed and constructed to regulate corresponding interface chemical reaction, which can afford long‐range electron transfer surfaces, numerous strong chemisorption, and catalytic sites in a working lithium–sulfur battery. Both experimental and theoretical calculation results suggest that a new catalytic interface enabled by metal‐like NbN with superb electrocatalysis anchored on NG is highly effective in regulating the blocked polysulfide redox reaction and tailoring the Li2S nucleation–growth–decomposition process. Therefore, the Li–S batteries with multifunctional NbN/NG barrier exhibit excellent rate performance (621.2 mAh g?1 at 3 C) and high stable cycling life (81.5% capacity retention after 400 cycles). This work provides new insights to promote Li–S batteries via multifunctional catalytic interface engineering.  相似文献   

19.
Improved conductivity and suppressed dissolution of lithium polysulfides is highly desirable for high‐performance lithium‐sulfur (Li‐S) batteries. Herein, by a facile solvent method followed by nitridation with NH3, a 2D nitrogen‐doped carbon structure is designed with homogeneously embedded Co4N nanoparticles derived from metal organic framework (MOF), grown on the carbon cloth (MOF‐Co4N). Experimental results and theoretical simulations reveal that Co4N nanoparticles act as strong chemical adsorption hosts and catalysts that not only improve the cycling performance of Li‐S batteries via chemical bonding to trap polysulfides but also improve the rate performance through accelerating the conversion reactions by decreasing the polarization of the electrode. In addition, the high conductive nitrogen‐doped carbon matrix ensures fast charge transfer, while the 2D structure offers increased pathways to facilitate ion diffusion. Under the current density of 0.1C, 0.5C, and 3C, MOF‐Co4N delivers reversible specific capacities of 1425, 1049, and 729 mAh g?1, respectively, and retains 82.5% capacity after 400 cycles at 1C, as compared to the sample without Co4N (MOF‐C) values of 61.3% (200 cycles). The improved cell performance corroborates the validity of the multifunctional design of MOF‐Co4N, which is expected to be a potentially promising cathode host for Li‐S batteries.  相似文献   

20.
Lithium–sulfur (Li–S) batteries are strongly considered as next-generation energy storage systems because of their high energy density. However, the shuttling of lithium polysulfides (LiPS), sluggish reaction kinetics, and uncontrollable Li-dendrite growth severely degrade the electrochemical performance of Li–S batteries. Herein, a dual-functional flexible free-standing carbon nanofiber conductive framework in situ embedded with TiN-VN heterostructures (TiN-VN@CNFs) as an advanced host simultaneously for both the sulfur cathode (S/TiN-VN@CNFs) and the lithium anode (Li/TiN-VN@CNFs) is designed. As cathode host, the TiN-VN@CNFs can offer synergistic function of physical confinement, chemical anchoring, and superb electrocatalysis of LiPS redox reactions. Meanwhile, the well-designed host with excellent lithiophilic feature can realize homogeneous lithium deposition for suppressing dendrite growth. Combined with these merits, the full battery (denoted as S/TiN-VN@CNFs || Li/TiN-VN@CNFs) exhibits remarkable electrochemical properties including high reversible capacity of 1110 mAh g−1 after 100 cycles at 0.2 C and ultralong cycle life over 600 cycles at 2 C. Even with a high sulfur loading of 5.6 mg cm−2, the full cell can achieve a high areal capacity of 5.5 mAh cm−2 at 0.1 C. This work paves a new design from theoretical and experimental aspects for fabricating high-energy-density flexible Li–S full batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号