共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
3.
Ke Gao Sae Byeok Jo Xueliang Shi Li Nian Ming Zhang Yuanyuan Kan Francis Lin Bin Kan Bo Xu Qikun Rong Lingling Shui Feng Liu Xiaobin Peng Guofu Zhou Yong Cao Alex K.‐Y. Jen 《Advanced materials (Deerfield Beach, Fla.)》2019,31(12)
In this paper, two near‐infrared absorbing molecules are successfully incorporated into nonfullerene‐based small‐molecule organic solar cells (NFSM‐OSCs) to achieve a very high power conversion efficiency (PCE) of 12.08%. This is achieved by tuning the sequentially evolved crystalline morphology through combined solvent additive and solvent vapor annealing, which mainly work on ZnP‐TBO and 6TIC, respectively. It not only helps improve the crystallinity of the ZnP‐TBO and 6TIC blend, but also forms multilength scale morphology to enhance charge mobility and charge extraction. Moreover, it simultaneously reduces the nongeminate recombination by effective charge delocalization. The resultant device performance shows remarkably enhanced fill factor and Jsc. These result in a very respectable PCE, which is the highest among all NFSM‐OSCs and all small‐molecule binary solar cells reported so far. 相似文献
4.
Shengbin Shi Peng Chen Yao Chen Kui Feng Bin Liu Jianhua Chen Qiaogan Liao Bao Tu Jiasi Luo Mengyao Su Han Guo Myung‐Gil Kim Antonio Facchetti Xugang Guo 《Advanced materials (Deerfield Beach, Fla.)》2019,31(46)
Currently, n‐type acceptors in high‐performance all‐polymer solar cells (all‐PSCs) are dominated by imide‐functionalized polymers, which typically show medium bandgap. Herein, a novel narrow‐bandgap polymer, poly(5,6‐dicyano‐2,1,3‐benzothiadiazole‐alt‐indacenodithiophene) (DCNBT‐IDT), based on dicyanobenzothiadiazole without an imide group is reported. The strong electron‐withdrawing cyano functionality enables DCNBT‐IDT with n‐type character and, more importantly, alleviates the steric hindrance associated with typical imide groups. Compared to the benchmark poly(naphthalene diimide‐alt‐bithiophene) (N2200), DCNBT‐IDT shows a narrower bandgap (1.43 eV) with a much higher absorption coefficient (6.15 × 104 cm?1). Such properties are elusive for polymer acceptors to date, eradicating the drawbacks inherited in N2200 and other high‐performance polymer acceptors. When blended with a wide‐bandgap polymer donor, the DCNBT‐IDT‐based all‐PSCs achieve a remarkable power conversion efficiency of 8.32% with a small energy loss of 0.53 eV and a photoresponse of up to 870 nm. Such efficiency greatly outperforms those of N2200 (6.13%) and the naphthalene diimide (NDI)‐based analog NDI‐IDT (2.19%). This work breaks the long‐standing bottlenecks limiting materials innovation of n‐type polymers, which paves a new avenue for developing polymer acceptors with improved optoelectronic properties and heralds a brighter future of all‐PSCs. 相似文献
5.
All‐Polymer Solar Cells Based on a Conjugated Polymer Containing Siloxane‐Functionalized Side Chains with Efficiency over 10% 下载免费PDF全文
Baobing Fan Lei Ying Peng Zhu Feilong Pan Feng Liu Junwu Chen Fei Huang Yong Cao 《Advanced materials (Deerfield Beach, Fla.)》2017,29(47)
A novel wide‐bandgap conjugated copolymer based on an imide‐functionalized benzotriazole building block containing a siloxane‐terminated side‐chain is developed. This copolymer is successfully used to fabricate highly efficient all‐polymer solar cells (all‐PSCs) processed at room temperature with the green‐solvent 2‐methyl‐tetrahydrofuran. When paired with a naphthalene diimide‐based polymer electron‐acceptor, the all‐PSC exhibits a maximum power conversion efficiency (PCE) of 10.1%, which is the highest value so far reported for an all‐PSC. Of particular interest is that the PCE remains 9.4% after thermal annealing at 80 °C for 24 h. The resulting high efficiency is attributed to a combination of high and balanced bulky charge carrier mobility, favorable face‐on orientation, and high crystallinity. These observations indicate that the resulting copolymer can be a promising candidate toward high‐performance all‐PSCs for practical applications. 相似文献
6.
11.2% All‐Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability 下载免费PDF全文
Kai Zhang Ruoxi Xia Baobing Fan Xiang Liu Zhenfeng Wang Sheng Dong Hin‐Lap Yip Lei Ying Fei Huang Yong Cao 《Advanced materials (Deerfield Beach, Fla.)》2018,30(36)
All‐polymer solar cells (all‐PSCs) that contain both p‐type and n‐type polymeric materials blended together as light‐absorption layers have attracted much attention, since the blend of a polymeric donor and acceptor should present superior photochemical, thermal, and mechanical stability to those of small molecular‐based organic solar cells. In this work, the interfacial stability is studied by using highly stable all‐polymer solar cell as a platform. It is found that the thermally deposited metal electrode atoms can diffuse into the active layer during device storage, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion of metal atoms can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials, or a tandem device structure. Learning from this, homojunction tandem all‐PSCs are successfully developed that simultaneously exhibit a record power conversion efficiency over 11% and remarkable stability with efficiency retaining 93% of the initial value after thermally aging at 80 °C for 1000 h. 相似文献
7.
8.
9.
10.
High‐Performance All‐Polymer Solar Cells Via Side‐Chain Engineering of the Polymer Acceptor: The Importance of the Polymer Packing Structure and the Nanoscale Blend Morphology 下载免费PDF全文
Changyeon Lee Hyunbum Kang Wonho Lee Taesu Kim Ki‐Hyun Kim Han Young Woo Cheng Wang Bumjoon J. Kim 《Advanced materials (Deerfield Beach, Fla.)》2015,27(15):2466-2471
11.
Small‐Molecule Solar Cells with Simultaneously Enhanced Short‐Circuit Current and Fill Factor to Achieve 11% Efficiency 下载免费PDF全文
Li Nian Ke Gao Yufeng Jiang Qikun Rong Xiaowen Hu Dong Yuan Feng Liu Xiaobin Peng Thomas P. Russell Guofu Zhou 《Advanced materials (Deerfield Beach, Fla.)》2017,29(29)
High‐efficiency small‐molecule‐based organic photovoltaics (SM‐OPVs) using two electron donors (p ‐DTS(FBTTh2)2 and ZnP) with distinctively different absorption and structural features are reported. Such a combination works well and synergically improves device short‐circuit current density (J sc) to 17.99 mA cm?2 and fill factor (FF) to 77.19%, yielding a milestone efficiency of 11%. To the best of our knowledge, this is the highest power conversion efficiency reported for SM‐OPVs to date and the first time to combine high J sc over 17 mA cm?2 and high FF over 77% into one SM‐OPV. The strategy of using multicomponent materials, with a selecting role of balancing varied electronic and structural necessities can be an important route to further developing higher performance devices. This development is important, which broadens the dimension and versatility of existing materials without much chemistry input. 相似文献
12.
Fuwen Zhao Shuixing Dai Yang Wu Qianqian Zhang Jiayu Wang Li Jiang Qidan Ling Zhixiang Wei Wei Ma Wei You Chunru Wang Xiaowei Zhan 《Advanced materials (Deerfield Beach, Fla.)》2017,29(18)
A new fluorinated nonfullerene acceptor, ITIC‐Th1, has been designed and synthesized by introducing fluorine (F) atoms onto the end‐capping group 1,1‐dicyanomethylene‐3‐indanone (IC). On the one hand, incorporation of F would improve intramolecular interaction, enhance the push–pull effect between the donor unit indacenodithieno[3,2‐b]thiophene and the acceptor unit IC due to electron‐withdrawing effect of F, and finally adjust energy levels and reduce bandgap, which is beneficial to light harvesting and enhancing short‐circuit current density (J SC). On the other hand, incorporation of F would improve intermolecular interactions through C? F···S, C? F···H, and C? F···π noncovalent interactions and enhance electron mobility, which is beneficial to enhancing J SC and fill factor. Indeed, the results show that fluorinated ITIC‐Th1 exhibits redshifted absorption, smaller optical bandgap, and higher electron mobility than the nonfluorinated ITIC‐Th. Furthermore, nonfullerene organic solar cells (OSCs) based on fluorinated ITIC‐Th1 electron acceptor and a wide‐bandgap polymer donor FTAZ based on benzodithiophene and benzotriazole exhibit power conversion efficiency (PCE) as high as 12.1%, significantly higher than that of nonfluorinated ITIC‐Th (8.88%). The PCE of 12.1% is the highest in fullerene and nonfullerene‐based single‐junction binary‐blend OSCs. Moreover, the OSCs based on FTAZ:ITIC‐Th1 show much better efficiency and better stability than the control devices based on FTAZ:PC71BM (PCE = 5.22%). 相似文献
13.
14.
15.
16.
Improved Performance of All‐Polymer Solar Cells Enabled by Naphthodiperylenetetraimide‐Based Polymer Acceptor 下载免费PDF全文
Yikun Guo Yunke Li Omar Awartani Han Han Jingbo Zhao Harald Ade He Yan Dahui Zhao 《Advanced materials (Deerfield Beach, Fla.)》2017,29(26)
A new polymer acceptor, naphthodiperylenetetraimide‐vinylene (NDP‐V), featuring a backbone of altenating naphthodiperylenetetraimide and vinylene units is designed and applied in all‐polymer solar cells (all‐PSCs). With this polymer acceptor, a new record power‐conversion efficiencies (PCE) of 8.59% has been achieved for all‐PSCs. The design principle of NDP‐V is to reduce the conformational disorder in the backbone of a previously developed high‐performance acceptor, PDI‐V, a perylenediimide‐vinylene polymer. The chemical modifications result in favorable changes to the molecular packing behaviors of the acceptor and improved morphology of the donor–acceptor (PTB7‐Th:NDP‐V) blend, which is evidenced by the enhanced hole and electron transport abilities of the active layer. Moreover, the stronger absorption of NDP‐V in the shorter‐wavelength range offers a better complement to the donor. All these factors contribute to a short‐circuit current density (J sc) of 17.07 mA cm?2. With a fill factor (FF) of 0.67, an average PCE of 8.48% is obtained, representing the highest value thus far reported for all‐PSCs. 相似文献
17.
Huiliang Sun Yumin Tang Chang Woo Koh Shaohua Ling Ruizhi Wang Kun Yang Jianwei Yu Yongqiang Shi Yingfeng Wang Han Young Woo Xugang Guo 《Advanced materials (Deerfield Beach, Fla.)》2019,31(15)
A novel imide‐functionalized arene, di(fluorothienyl)thienothiophene diimide (f‐FBTI2), featuring a fused backbone functionalized with electron‐withdrawing F atoms, is designed, and the synthetic challenges associated with highly electron‐deficient fluorinated imide are overcome. The incorporation of f‐FBTI2 into polymer affords a high‐performance n‐type semiconductor f‐FBTI2‐T, which shows a reduced bandgap and lower‐lying lowest unoccupied molecular orbital (LUMO) energy level than the polymer analog without F or with F‐functionalization on the donor moiety. These optoelectronic properties reflect the distinctive advantages of fluorination of electron‐deficient acceptors, yielding “stronger acceptors,” which are desirable for n‐type polymers. When used as a polymer acceptor in all‐polymer solar cells, an excellent power conversion efficiency of 8.1% is achieved without any solvent additive or thermal treatment, which is the highest value reported for all‐polymer solar cells except well‐studied naphthalene diimide and perylene diimide‐based n‐type polymers. In addition, the solar cells show an energy loss of 0.53 eV, the smallest value reported to date for all‐polymer solar cells with efficiency > 8%. These results demonstrate that fluorination of imide‐functionalized arenes offers an effective approach for developing new electron‐deficient building blocks with improved optoelectronic properties, and the emergence of f‐FBTI2 will change the scenario in terms of developing n‐type polymers for high‐performance all‐polymer solar cells. 相似文献
18.
Side‐Chain Fluorination: An Effective Approach to Achieving High‐Performance All‐Polymer Solar Cells with Efficiency Exceeding 7% 下载免费PDF全文
Jiho Oh Kakaraparthi Kranthiraja Changyeon Lee Kumarasamy Gunasekar Seonha Kim Biwu Ma Bumjoon J. Kim Sung‐Ho Jin 《Advanced materials (Deerfield Beach, Fla.)》2016,28(45):10016-10023
19.
All‐Solution‐Processed Metal‐Oxide‐Free Flexible Organic Solar Cells with Over 10% Efficiency 下载免费PDF全文
Wei Song Xi Fan Bingang Xu Feng Yan Huiqin Cui Qiang Wei Ruixiang Peng Ling Hong Jiaming Huang Ziyi Ge 《Advanced materials (Deerfield Beach, Fla.)》2018,30(26)
All‐solution‐processing at low temperatures is important and desirable for making printed photovoltaic devices and also offers the possibility of a safe and cost‐effective fabrication environment for the devices. Herein, an all‐solution‐processed flexible organic solar cell (OSC) using poly(3,4‐ethylenedioxythiophene):poly‐(styrenesulfonate) electrodes is reported. The all‐solution‐processed flexible devices yield the highest power conversion efficiency of 10.12% with high fill factor of over 70%, which is the highest value for metal‐oxide‐free flexible OSCs reported so far. The enhanced performance is attributed to the newly developed gentle acid treatment at room temperature that enables a high‐performance PEDOT:PSS/plastic underlying substrate with a matched work function (≈4.91 eV), and the interface engineering that endows the devices with better interface contacts and improved hole mobility. Furthermore, the flexible devices exhibit an excellent mechanical flexibility, as indicated by a high retention (≈94%) of the initial efficiency after 1000 bending cycles. This work provides a simple route to fabricate high‐performance all‐solution‐processed flexible OSCs, which is important for the development of printing, blading, and roll‐to‐roll technologies. 相似文献
20.
Shaoqing Zhang Yunpeng Qin Jie Zhu Jianhui Hou 《Advanced materials (Deerfield Beach, Fla.)》2018,30(20)
Fluorine‐contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high‐performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB‐T‐2F and PBDB‐T‐2Cl, are synthesized and compared in parallel. The synthesis of PBDB‐T‐2Cl is much simpler than that of PBDB‐T‐2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB‐T‐2Cl‐based PSCs exhibit higher open circuit voltage (Voc) than the PBDB‐T‐2F‐based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors. 相似文献