首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel CoFe‐based catalysts are successfully fabricated by hydrogen reduction of CoFeAl layered‐double‐hydroxide (LDH) nanosheets at 300–700 °C. The chemical composition and morphology of the reaction products (denoted herein as CoFe‐x) are highly dependent on the reduction temperature (x). CO2 hydrogenation experiments are conducted on the CoFe‐x catalysts under UV–vis excitation. With increasing LDH‐nanosheet reduction temperature, the CoFe‐x catalysts show a progressive selectivity shift from CO to CH4, and eventually to high‐value hydrocarbons (C2+). CoFe‐650 shows remarkable selectivity toward hydrocarbons (60% CH4, 35% C2+). X‐ray absorption fine structure, high‐resolution transmission electron microscopy, Mössbauer spectroscopy, and density functional theory calculations demonstrate that alumina‐supported CoFe‐alloy nanoparticles are responsible for the high selectivity of CoFe‐650 for C2+ hydrocarbons, also allowing exploitation of photothermal effects. This study demonstrates a vibrant new catalyst platform for harnessing clean, abundant solar‐energy to produce valuable chemicals and fuels from CO2.  相似文献   

2.
Overall photocatalytic conversion of CO2 and pure H2O driven by solar irradiation into methanol provides a sustainable approach for extraterrestrial synthesis. However, few photocatalysts exhibit efficient production of CH3OH. Here, BiOBr nanosheets supporting atomic Cu catalysts for CO2 reduction are reported. The investigation of charge dynamics demonstrates a strong built-in electric field established by isolated Cu sites as electron traps to facilitate charge transfer and stabilize charge carriers. As result, the catalysts exhibit a substantially high catalytic performance with methanol productivity of 627.66 µmol gcatal−1 h−1 and selectivity of ≈90% with an apparent quantum efficiency of 12.23%. Mechanism studies reveal that the high selectivity of methanol can be ascribed to energy-favorable hydrogenation of *CO intermediate giving rise to *CHO. The unfavorable adsorption on Cu1@BiOBr prevents methanol from being oxidized by photogenerated holes. This work highlights the great potential of single-atom photocatalysts in chemical transformation and energy storage reactions.  相似文献   

3.
Here, the photocatalytic CO2 reduction reaction (CO2RR) with the selectivity of carbon products up to 100% is realized by completely suppressing the H2 evolution reaction under visible light (λ > 420 nm) irradiation. To target this, plasmonic Au/CdSe dumbbell nanorods enhance light harvesting and produce a plasmon‐enhanced charge‐rich environment; peripheral Cu2O provides rich active sites for CO2 reduction and suppresses the hydrogen generation to improve the selectivity of carbon products. The middle CdSe serves as a bridge to transfer the photocharges. Based on synthesizing these Au/CdSe–Cu2O hierarchical nanostructures (HNSs), efficient photoinduced electron/hole (e?/h+) separation and 100% of CO selectivity can be realized. Also, the 2e?/2H+ products of CO can be further enhanced and hydrogenated to effectively complete 8e?/8H+ reduction of CO2 to methane (CH4), where a sufficient CO concentration and the proton provided by H2O reduction are indispensable. Under the optimum condition, the Au/CdSe–Cu2O HNSs display high photocatalytic activity and stability, where the stable gas generation rates are 254 and 123 µmol g?1 h?1 for CO and CH4 over a 60 h period.  相似文献   

4.
As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO2) photoreduction into value‐added chemicals and solar fuels (for example, CO, HCOOH, CH3OH, CH4) has attracted more and more attention. In nature, photosynthetic organisms effectively convert CO2 and H2O to carbohydrates and oxygen (O2) using sunlight, which has inspired the development of low‐cost, stable, and effective artificial photocatalysts for CO2 photoreduction. Due to their low cost, facile synthesis, excellent light harvesting, multiple exciton generation, feasible charge‐carrier regulation, and abundant surface sites, semiconductor quantum dots (QDs) have recently been identified as one of the most promising materials for establishing highly efficient artificial photosystems. Recent advances in CO2 photoreduction using semiconductor QDs are highlighted. First, the unique photophysical and structural properties of semiconductor QDs, which enable their versatile applications in solar energy conversion, are analyzed. Recent applications of QDs in photocatalytic CO2 reduction are then introduced in three categories: binary II–VI semiconductor QDs (e.g., CdSe, CdS, and ZnSe), ternary I–III–VI semiconductor QDs (e.g., CuInS2 and CuAlS2), and perovskite‐type QDs (e.g., CsPbBr3, CH3NH3PbBr3, and Cs2AgBiBr6). Finally, the challenges and prospects in solar CO2 reduction with QDs in the future are discussed.  相似文献   

5.
The CO2 reduction reaction (CO2RR) driven by renewable electricity represents a promising strategy toward alleviating the energy shortage and environmental crisis facing humankind. Cu species, as one type of versatile electrocatalyst for the CO2RR, attract tremendous research interest. However, for C2 products, ethanol formation is commonly less favored over Cu electrocatalysts. Herein, AuCu alloy nanoparticle embedded Cu submicrocone arrays (AuCu/Cu‐SCA) are constructed as an active, selective, and robust electrocatalyst for the CO2RR. Enhanced selectivity for EtOH is gained, whose Faradaic efficiency (FE) reaches 29 ± 4%, while ethylene formation is relatively inhibited (16 ± 4%) in KHCO3 aqueous solution. The ratio between partial current densities of EtOH and C2H4 (jEtOH/jC2H4) can be tuned in the range from 0.15 ± 0.27 to 1.81 ± 0.55 by varying the Au content of the electrocatalysts. The combined experimental and theoretical calculation results identify the importance of Au in modifying binding energies of key intermediates, such as CH2CHO*, CH3CHO*, and CH3CH2O*, which consequently modify the activity and selectivity (jEtOH/jC2H4) for the CO2RR. Moreover, AuCu/Cu‐SCA also shows high durability with both the current density and FEEtOH being largely maintained for 24 h electrocatalysis.  相似文献   

6.
The mixing of charge states of metal copper catalysts may lead to a much improved reactivity and selectivity toward multicarbon products for CO2 reduction. Here, an electrocatalyst model composed of copper clusters supported on graphitic carbon nitride (g‐C3N4) is proposed; the connecting Cu atoms with g‐C3N4 can be oxidized to Cux + due to substantial charge transfer from Cu to N atoms, while others stay as Cu0. It is revealed that CO2 can be captured and reduced into *CO on the Cut0 site, owing to its zero oxidation state. More importantly, C–C coupling reaction of two *CHO species on the Cut0–Cubx + atomic interface can occur with a rather low kinetic barrier of 0.57 eV, leading to the formation of the final C2 product, namely, C2H5OH. During the whole process, the limiting potential is just 0.68 V. These findings may open a new avenue for CO2 reduction into high‐value fuels and chemicals.  相似文献   

7.
Limited comprehension of the reaction mechanism has hindered the development of catalysts for CO2 reduction reactions (CO2RR). Here, the bimetallic AgCu nanocatalyst platform is employed to understand the effect of the electronic structure of catalysts on the selectivity and activity for CO2 electroreduction to CO. The atomic arrangement and electronic state structure vary with the atomic ratio of Ag and Cu, enabling tunable d-band centers to optimize the binding strength of key intermediates. Density functional theory calculations confirm that the variation of Cu content greatly affects the free energy of *COOH, *CO (intermediate of CO), and *H (intermediates of H2), which leads to the change of the rate-determining step. Specifically, Ag96Cu4 reduces the free energy of the formation of *COOH while maintaining a relatively high theoretical overpotential for hydrogen evolution reaction(HER), thus achieving the best CO selectivity. While Ag70Cu30 shows relatively low formation energy of both *COOH and *H, the compromised thermodynamic barrier and product selectivity allows Ag70Cu30 the best CO partial current density. This study realizes the regulation of the selectivity and activity of electrocatalytic CO2 to CO, which provides a promising way to improve the intrinsic performance of CO2RR on bimetallic AgCu.  相似文献   

8.
The electroreduction of CO2 to CO provides a potential way to solve the environmental problems caused by excess fossil fuel utilization. Loading transition metals on metal oxides is an efficient strategy for CO2 electroreduction as well as for reducing metal usage. However, it needs a great potential to overcome the energy barrier to increase CO selectivity. This paper describes how 8.7 wt% gold nanoparticles (NPs) loaded on CeOx nanosheets (NSs) with high Ce3+ concentration effectively decrease the overpotential for CO2 electroreduction. The 3.6 nm gold NPs on CeOx NSs containing 47.3% Ce3+ achieve CO faradaic efficiency of 90.1% at ?0.5 V in 0.1 m KHCO3 solution. Furthermore, the CO2 electroreduction activity shows a strong relationship with the fractions of Ce3+ on Au‐CeOx NSs, which has never been reported. In situ surface‐enhanced infrared absorption spectroscopy shows that Au‐CeOx NSs with high Ce3+ concentration promote CO2 activation and *COOH formation. Theoretical calculations also indicate that the improved performance is attributed to the enhanced *COOH formation on Au‐CeOx NSs with high Ce3+ fraction.  相似文献   

9.
Electrochemical reduction of CO to value-added products holds promise for storage of energy from renewable sources. Copper can convert CO into multi-carbon (C2+) products during CO electroreduction. However, developing a Cu electrocatalyst with a high selectivity for CO reduction and desirable production rates for C2+ products remains challenging. Herein, highly lattice-disordered Cu3N with abundant twin structures as a precursor electrocatalyst is examined for CO reduction. Through in situ activation during the CO reduction reaction (CORR) and concomitant release of nitrogen, the obtained metallic Cu° catalyst particles inherit the lattice dislocations present in the parent Cu3N lattice. The de-nitrified catalyst delivers an unprecedented C2+ Faradaic efficiency of over 90% at a current density of 727 mA cm−2 in a flow cell system. Using a membrane electrode assembly (MEA) electrolyzer with a solid-state electrolyte (SSE), a 17.4 vol% ethylene stream and liquid streams with concentration of 1.45 m and 230 × 10−3 m C2+ products at the outlet of the cathode and SSE-containment layer are obtained.  相似文献   

10.
Converting CO2 to clean-burning fuel such as natural gas (CH4) with high activity and selectivity remains to be a grand challenge due to slow kinetics of multiple electron transfer processes and competitive hydrogen evolution reaction (HER). Herein, the fabrication of surfactants (C11H23COONa, C12H25SO4Na, C16H33SO4Na) intercalated NiAl-layered double hydroxides (NiAl-LDH) is reported, resulting in the formation of LDH-S1 (S1 = C11H23COO), LDH-S2 (S2 = C12H25SO4) and LDH-S3 (S3 = C16H33SO4) with curved morphology. Compared with NiAl-LDH with a 1.53% selectivity of CH4, LDH-S2 shows higher selectivity of CH4 (83.07%) and lower activity of HER (3.84%) in CO2 photoreduction reaction (CO2PR). Detailed characterizations and DFT calculation indicates that the inherent lattice strain in LDH-S2 leads to the structural distortion with the presence of VNi/Al defects and compressed M O M bonds, and thereby reduces the overall energy barrier of CO2 to CH4. Moreover, the lower oxidation states of Ni in LDH-S2 enhances the adsorption of intermediates such as OCOH* and *CO, promoting the hydrogenation of CO to CH4. Therefore, the coupling effect of both lattice strain and electronic structure of the LDH-S2 significantly improves the activity and selectivity for CO2PR.  相似文献   

11.
The catalytic behavior of transition metals (Sc to Zn) combined in polymeric phthalocyanine (Pc) is investigated systematically by using first‐principles calculations. The results indicate that CoPc exhibits the highest catalytic activity for CO oxidation at room temperature with low energy barriers. By exploring the two well‐established mechanisms for CO oxidation with O2, namely, the Langmuir–Hinshelwood (LH) and the Eley–Rideal (ER) mechanisms, it is found that the first step of CO oxidation catalyzed by CoPc is the LH mechanism (CO + O2 → CO2 + O) with energy barrier as low as 0.65 eV. The second step proceeds via both ER and LH mechanisms (CO + O → CO2) with small energy barriers of 0.10 and 0.12 eV, respectively. The electronic resonance among Co‐3d, CO‐2π*, and O2‐2π* orbitals is responsible for the high activity of CoPc. These results have significant implications for a novel avenue to fabricate organometallic sheet nanocatalysts for CO oxidation with low cost and high activity.  相似文献   

12.
CO2 conversion into value‐added chemical fuels driven by solar energy is an intriguing approach to address the current and future demand of energy supply. Currently, most reported surface‐sensitized heterogeneous photocatalysts present poor activity and selectivity under visible light irradiation. Here, photosensitized porous metallic and magnetic 1200 Co C composites (PMMCoCC‐1200) are coupled with a [Ru(bpy)3]Cl2 photosensitizer to efficiently reduce CO2 under visible‐light irradiation in a selective and sustainable way. As a result, the CO production reaches a high yield of 1258.30 µL with selectivity of 64.21% in 6 h, superior to most reported heterogeneous photocatalysts. Systematic investigation demonstrates that the central metal cobalt is the active site for activating the adsorbed CO2 molecules and the surficial graphite carbon coating on cobalt metal is crucial for transferring the electrons from the triplet metal‐to‐ligand charge transfer of the photosensitizer Ru(bpy)32+, which gives rise to significant enhancement for CO2 reduction efficiency. The fast electron injection from the excited Ru(bpy)32+ to PMMCoCC‐1200 and the slow backward charge recombination result in a long‐lived, charge‐separated state for CO2 reduction. More impressively, the long‐time stability and easy magnetic recycling ability of this metallic photocatalyst offer more benefits to the photocatalytic field.  相似文献   

13.
Upcoming emission regulations order highly effective NOx‐reduction systems in lean‐burn engines requiring new catalytic materials and integrated control of the reduction process. Thus, new approaches for NOx‐reduction and its monitoring over an On‐Board‐Diagnostic (OBD) system are suggested throughout the globe. A promising attempt is the development of a catalytic system having an integrated NOx‐sensor, based on selective catalytic reduction process and impedance sensors. The study displays the results achieved both with a perovskite type of self‐regenerative catalyst functioning by H2‐reductant and with impedance NOx‐sensors. The catalysts were tested at the temperature range of 150 °C to 360 °C yielding NOx conversion rates of 92 % with high selectivity to N2. Impedance sensors having NiCr2O4‐ and NiO‐SE and PYSZ‐ and FYSZ‐electrolytes are developed and tested at 600 °C under lean atmosphere (5 vol. % O2). Better sensing behaviour towards NO and lower cross‐selectivity towards O2, CO, CO2 and CH4 have been observed with sensors having NiO‐SE.  相似文献   

14.
Conversion of syngas (CO, H2) to hydrocarbons, commonly known as the Fischer–Tropsch (FT) synthesis, represents a fundamental pillar in today's chemical industry and is typically carried out under technically demanding conditions (1–3 MPa, 300–400 °C). Photocatalysis using sunlight offers an alternative and potentially more sustainable approach for the transformation of small molecules (H2O, CO, CO2, N2, etc.) to high‐valuable products, including hydrocarbons. Herein, a novel series of Fe‐based heterostructured photocatalysts (Fe‐x) is successfully fabricated via H2 reduction of ZnFeAl‐layered double hydroxide (LDH) nanosheets at temperatures (x) in the range 300–650 °C. At a reduction temperature of 500 °C, the heterostructured photocatalyst formed (Fe‐500) consists of Fe0 and FeOx nanoparticles supported by ZnO and amorphous Al2O3. Fe‐500 demonstrates remarkable CO hydrogenation performance with very high initial selectivities toward hydrocarbons (89%) and especially light olefins (42%), and a very low selectivity towards CO2 (11%). The intimate and abundant interfacial contacts between metallic Fe0 and FeOx in the Fe‐500 photocatalyst underpins its outstanding photocatalytic performance. The photocatalytic production of high‐value light olefins with suppressed CO2 selectivity from CO hydrogenation is demonstrated here.  相似文献   

15.
The unique electronic and structural properties of 2D materials have triggered wide research interest in catalysis. The lattice of 2D materials and the interface between 2D covers and other substrates provide intriguing confinement environments for active sites, which has stimulated a rising area of “confinement catalysis with 2D materials.” Fundamental understanding of confinement catalysis with 2D materials will favor the rational design of high‐performance 2D nanocatalysts. Confinement catalysis with 2D materials has found extensive applications in energy‐related reaction processes, especially in the conversion of small energy‐related molecules such as O2, CH4, CO, CO2, H2O, and CH3OH. Two representative strategies, i.e., 2D lattice‐confined single atoms and 2D cover‐confined metals, have been applied to construct 2D confinement catalytic systems with superior catalytic activity and stability. Herein, the recent advances in the design, applications, and structure–performance analysis of two 2D confinement catalytic systems are summarized. The different routes for tuning the electronic states of 2D confinement catalysts are highlighted and perspectives on confinement catalysis with 2D materials toward energy conversion and utilization in the future are provided.  相似文献   

16.
Electrochemical conversion of carbon dioxide (electrochemical reduction of carbon dioxide) to value‐added products is a promising way to solve CO2 emission problems. This paper describes a facile one‐pot approach to synthesize palladium–copper (Pd–Cu) bimetallic catalysts with different structures. Highly efficient performance and tunable product distributions are achieved due to a coordinative function of both enriched low‐coordinated sites and composition effects. The concave rhombic dodecahedral Cu3Pd (CRD‐Cu3Pd) decreases the onset potential for methane (CH4) by 200 mV and shows a sevenfold CH4 current density at ?1.2 V (vs reversible hydrogen electrode) compared to Cu foil. The flower‐like Pd3Cu (FL‐Pd3Cu) exhibits high faradaic efficiency toward CO in a wide potential range from ?0.7 to ?1.3 V, and reaches a fourfold CO current density at ?1.3 V compared to commercial Pd black. Tafel plots and density functional theory calculations suggest that both the introduction of high‐index facets and alloying contribute to the enhanced CH4 current of CRD‐Cu3Pd, while the alloy effect is responsible for high CO selectivity of FL‐Pd3Cu.  相似文献   

17.
The electrocatalytic conversion of earth-abundant simple molecules into value-added commodity chemicals can transform current chemical production regimes with enormous socioeconomic and environmental benefits. For these applications, 2D electrocatalysts have emerged as a new class of high-performance electrocatalyst with massive forward-looking potential. Recent advances in 2D electrocatalysts are reviewed for emerging applications that utilize naturally existing H2O, N2, O2, Cl (seawater) and CH4 (natural gas) as reactants for nitrogen reduction (N2 → NH3), two-electron oxygen reduction (O2 → H2O2), chlorine evolution (Cl → Cl2), and methane partial oxidation (CH4 → CH3OH) reactions to generate NH3, H2O2, Cl2, and CH3OH. The unique 2D features and effective approaches that take advantage of such features to create high-performance 2D electrocatalysts are articulated with emphasis. To benefit the readers and expedite future progress, the challenges facing the future development of 2D electrocatalysts for each of the above reactions and the related perspectives are provided.  相似文献   

18.
Tandem catalysis is a promising way to break the limitation of linear scaling relationship for enhancing efficiency, and the desired tandem catalysts for electrochemical CO2 reduction reaction (CO2RR) are urgent to be developed. Here, a tandem electrocatalyst created by combining Cu foil (CF) with a single-site Cu(II) metal–organic framework (MOF), named as Cu–MOF–CF, to realize improved electrochemical CO2RR performance, is reported. The Cu–MOF–CF shows suppression of CH4, great increase in C2H4 selectivity (48.6%), and partial current density of C2H4 at −1.11 V versus reversible hydrogen electrode. The outstanding performance of Cu–MOF–CF for CO2RR results from the improved microenvironment of the Cu active sites that inhibits CH4 production, more CO intermediate produced by single-site Cu–MOF in situ for CF, and the enlarged active surface area by porous Cu–MOF. This work provides a strategy to combine MOFs with copper-based electrocatalysts to establish high-efficiency electrocatalytic CO2RR.  相似文献   

19.
Electrochemical CO2 reduction reaction (CO2RR) is a promising strategy for waste CO2 utilization and intermittent electricity storage. Herein, it is reported that bimetallic Cu/Pd catalysts with enhanced *CO affinity show a promoted CO2RR performance for multi-carbon (C2+) production under industry-relevant high current density. Especially, bimetallic Cu/Pd-1% catalyst shows an outstanding CO2-to-C2+ conversion with 66.2% in Faradaic efficiency (FE) and 463.2 mA cm−2 in partial current density. An increment in the FE ratios of C2+ products to CO  for Cu/Pd-1% catalyst further illuminates a preferable C2+ production. In situ Raman spectra reveal that the atop-bounded CO is dominated by low-frequency band CO on Cu/Pd-1% that leads to C2+ products on bimetallic catalysts, in contrast to the majority of high-frequency band CO on Cu that favors the formation of CO. Density function theory calculation confirms that bimetallic Cu/Pd catalyst enhances the *CO adsorption and reduces the Gibbs free energy of the C C coupling process, thereby favoring the formation of C2+ products.  相似文献   

20.
《Advanced Powder Technology》2020,31(6):2505-2512
Artificial photosynthesis has attracted a lot of attention because it can tackle both global environmental problems and energy crisis. In this paper, SnS2 with different morphologies were synthesized to study their activity and selectivity of photocatalytic reduction of carbon dioxide (CO2). The size of tablet-like SnS2 is around 80–120 nm while the flower-like SnS2 is composed of nanosheets with a thickness of 10 nm. The reduction products of the as-obtained samples are both CO and CH4. The flower-like SnS2 sample processes more efficacious separation of photogenerated carriers compared to tablet-like SnS2 and shows higher photocatalytic reduction efficiency with CH4 yield of 97.5 μmol g−1, which is approximately 5.7 times higher than that of tablet-like SnS2, while the tablet-like SnS2 shows high selectivity (79%) for CO production. The results reveal that the morphology plays an important role in the activity and selectivity of photocatalytic reduction of CO2 over SnS2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号