首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Camphor is used to transfer centimeter‐scale ultrathin films onto custom‐designed substrates for mechanical (tensile) testing. Compared to traditional transfer methods using dissolving/peeling to remove the support‐layers, camphor is sublimed away in air at low temperature, thereby avoiding additional stress on the as‐transferred films. Large‐area ultrathin films can be transferred onto hollow substrates without damage by this method. Tensile measurements are made on centimeter‐scale 300 nm‐thick graphene oxide film specimens, much thinner than the ≈2 μm minimum thickness of macroscale graphene‐oxide films previously reported. Tensile tests were also done on two different types of large‐area samples of adlayer free CVD‐grown single‐layer graphene supported by a ≈100 nm thick polycarbonate film; graphene stiffens this sample significantly, thus the intrinsic mechanical response of the graphene can be extracted. This is the first tensile measurement of centimeter‐scale monolayer graphene films. The Young's modulus of polycrystalline graphene ranges from 637 to 793 GPa, while for near single‐crystal graphene, it ranges from 728 to 908 GPa (folds parallel to the tensile loading direction) and from 683 to 775 GPa (folds orthogonal to the tensile loading direction), demonstrating the mechanical performance of large‐area graphene in a size scale relevant to many applications.  相似文献   

2.
Epitaxial graphene grown on single crystal Cu(111) foils by chemical vapor deposition is found to be free of wrinkles and under biaxial compressive strain. The compressive strain in the epitaxial regions (0.25–0.40%) is higher than regions where the graphene is not epitaxial with the underlying surface (0.20–0.25%). This orientation‐dependent strain relaxation is through the loss of local adhesion and the generation of graphene wrinkles. Density functional theory calculations suggest a large frictional force between the epitaxial graphene and the Cu(111) substrate, and this is therefore an energy barrier to the formation of wrinkles in the graphene. Enhanced chemical reactivity is found in epitaxial graphene on Cu(111) foils as compared to graphene on polycrystalline Cu foils for certain chemical reactions. A higher compressive strain possibly favors lowering the formation energy and/or the energy gap between the initial and transition states, either of which can lead to an increase in chemical reactivity.  相似文献   

3.
The direct growth of high‐quality, large‐area, uniform, vertically stacked Gr/h‐BN heterostructures is of vital importance for applications in electronics and optoelectronics. However, the main challenge lies in the catalytically inert nature of the hexagonal boron nitride (h‐BN) substrates, which usually afford a rather low decomposition rate of carbon precursors, and thus relatively low growth rate of graphene. Herein, a nickelocene‐precursor‐facilitated route is developed for the fast growth of Gr/h‐BN vertical heterostructures on Cu foils, which shows much improved synthesis efficiency (8–10 times faster) and crystalline quality of graphene (large single‐crystalline domain up to ≈20 µm). The key advantage of our synthetic route is the utilization of nickel atoms that are decomposed from nickelocene molecules as the gaseous catalyst, which can decrease the energy barrier for graphene growth and facilitate the decomposition of carbon sources, according to our density functional theory calculations. The high‐quality Gr/h‐BN stacks are proved to be perfect anode/protecting layers for high‐performance organic light‐emitting diode devices. In this regard, this work offers a brand‐new route for the fast growth of Gr/h‐BN heterostructures with practical scalability and high crystalline quality, thus should propel its wide applications in transparent electrodes, high‐performance electronic devices, and energy harvesting/transition directions.  相似文献   

4.
Robertson AW  Warner JH 《Nano letters》2011,11(3):1182-1189
Hexagonal-shaped single crystal domains of few layer graphene (FLG) are synthesized on copper foils using atmospheric pressure chemical vapor deposition with a high methane flow. Scanning electron microscopy reveals that the graphene domains have a hexagonal shape and are randomly orientated on the copper foil. However, the sites of graphene nucleation exhibit some correlation by forming linear rows. Transmission electron microscopy is used to examine the folded edges of individual domains and reveals they are few-layer graphene consisting of approximately 5-10 layers in the central region and thinning out toward the edges of the domain. Selected area electron diffraction of individual isolated domains reveals they are single crystals with AB Bernal stacking and free from the intrinsic rotational stacking faults that are associated with turbostratic graphite. We study the time-dependent growth dynamics of the domains and show that the final continuous FLG film is polycrystalline, consisting of randomly connected single crystal domains.  相似文献   

5.
Graphene has recently attracted particular interest as a flexible barrier film preventing permeation of gases and moistures. However, it has been proved to be exceptionally challenging to develop large‐scale graphene films with little oxygen and moisture permeation suitable for industrial uses, mainly due to the presence of nanometer‐sized defects of obscure origins. Here, the origins of water permeable routes on graphene‐coated Cu foils are investigated by observing the micrometer‐sized rusts in the underlying Cu substrates, and a site‐selective passivation method of the nanometer‐sized routes is devised. It is revealed that nanometer‐sized holes or cracks are primarily concentrated on graphene wrinkles rather than on other structural imperfections, resulting in severe degradation of its water impermeability. They are found to be predominantly induced by the delamination of graphene bound to Cu as a release of thermal stress during the cooling stage after graphene growth, especially at the intersection of the Cu step edges and wrinkles owing to their higher adhesion energy. Furthermore, the investigated routes are site‐selectively passivated by an electron‐beam‐induced amorphous carbon layer, thus a substantial improvement in water impermeability is achieved. This approach is likely to be extended for offering novel barrier properties in flexible films based on graphene and on other atomic crystals.  相似文献   

6.
The synthesis of Bernal‐stacked multilayer graphene over large areas is intensively investigated due to the value of this material's tunable electronic structure, which makes it promising for use in a wide range of optoelectronic applications. Multilayer graphene is typically formed via chemical vapor deposition onto a metal catalyst, such as Ni, a Cu–Ni alloy, or a Cu pocket. These methods, however, require sophisticated control over the process parameters, which limits the process reproducibility and reliability. Here, a new synthetic method for the facile growth of large‐area Bernal‐stacked multilayer graphene with precise layer control is proposed. A thin Ni film is deposited onto the back side of a Cu foil to induce controlled diffusion of carbon atoms through bulk Cu from the back to the front. The resulting multilayer graphene exhibits a 97% uniformity and a sheet resistance of 50 Ω sq?1 with a 90% transmittance after doping. The growth mechanism is elucidated and a generalized kinetic model is developed to describe Bernal‐stacked multilayer graphene growth by the carbon atoms diffused through bulk Cu.  相似文献   

7.
The segregation of carbon from metals in which carbon is highly soluble, such as Ni (≈1.1 atom% at 1000 °C), is a typical method for graphene growth; this method differs from the surface‐catalyzed growth of graphene that occurs on other metals such as Cu (<0.04 atom%). It has not been established whether strictly monolayer graphene could be synthesized through the traditional chemical vapor deposition route on metals where carbon is highly soluble, such as Pd (≈3.5 atom%). In this work, this issue is investigated by suppressing the grain boundary segregation using a pretreatment comprising the annealing of the Pd foils; this method was motivated by the fact that the typical thick growths at the grain boundaries revealed that the grain boundary functions as the main segregation channel in polycrystalline metals. To evaluate the high crystallinity of the as‐grown graphene, detailed atomic‐scale characterization with scanning tunneling microscopy is performed.  相似文献   

8.
The future electronic application of graphene highly relies on the production of large‐area high‐quality single‐crystal graphene. However, the growth of single‐crystal graphene on different substrates via either single nucleation or seamless stitching is carried out at a temperature of 1000 °C or higher. The usage of this high temperature generates a variety of problems, including complexity of operation, higher contamination, metal evaporation, and wrinkles owing to the mismatch of thermal expansion coefficients between the substrate and graphene. Here, a new approach for the fabrication of ultraflat single‐crystal graphene using Cu/Ni (111)/sapphire wafers at lower temperature is reported. It is found that the temperature of epitaxial growth of graphene using Cu/Ni (111) can be reduced to 750 °C, much lower than that of earlier reports on catalytic surfaces. Devices made of graphene grown at 750 °C have a carrier mobility up to ≈9700 cm2 V?1 s?1 at room temperature. This work shines light on a way toward a much lower temperature growth of high‐quality graphene in single crystallinity, which could benefit future electronic applications.  相似文献   

9.
The synthesis of large area, homogenous, single layer graphene on cobalt (Co) and nickel (Ni) is reported. The process involves vacuum annealing of sputtered amorphous carbon (a-C) deposited on Co/sapphire or Ni/sapphire substrates. The improved crystallinity of the metal film, assisted by the sapphire substrate, proves to be the key to the quality of as-grown graphene film. The crystallinity of the Co and Ni metal films was improved by sputtering the metal at elevated temperature as was verified by X-ray diffraction (XRD). After sputtering of a-C and annealing, large area, single layer graphene that occupies almost the entire area of the substrate was produced. With this method, 100 mm2-area single layer graphene can be synthesized and is limited only by the substrate and vacuum chamber size. The homogeneity of the graphene film is not dependent on the cooling rate, in contrast to syntheses using polycrystalline metal films and conventional chemical vapor deposition (CVD) growth. Our facile method of producing single layer graphene on Co and Ni metal films should lead to large scale graphene-based applications.  相似文献   

10.
An air‐stable transparent conductive film with “quasi‐freestanding” graphene supported on horizontal single walled carbon nanotubes (SWCNTs) arrays is fabricated. The sheet resistance of graphene films stacked via layer‐by‐layer transfer (LBL) on quartz, and modified by 1‐Pyrenebutyric acid N‐hydroxysuccinimide ester (PBASE), is reduced from 273 Ω/sq to about 76 Ω/sq. The electrical properties are stable to heat treatment (up to 200 ºC) and ambient exposure. Organic light‐emitting diodes (OLEDs) constructed of this carbon anode (T ≈ 89.13% at 550 nm) exhibit ≈88% power efficiency of OLEDs fabricated on an ITO anode (low turn on voltage ≈3.1 eV, high luminance up to ≈29 490 cd/m2, current efficiency ≈14.7 cd/A). Most importantly, the entire graphene‐on‐SWCNT hybrid electrodes can be transferred onto plastic (PET) forming a highly‐flexible OLED device, which continues to function without degradation in performance at bending angles >60°.  相似文献   

11.
Future applications of graphene rely highly on the production of large‐area high‐quality graphene, especially large single‐crystalline graphene, due to the reduction of defects caused by grain boundaries. However, current large single‐crystalline graphene growing methodologies are suffering from low growth rate and as a result, industrial graphene production is always confronted by high energy consumption, which is primarily caused by high growth temperature and long growth time. Herein, a new growth condition achieved via ethane being the carbon feedstock to achieve low‐temperature yet rapid growth of large single‐crystalline graphene is reported. Ethane condition gives a growth rate about four times faster than methane, achieving about 420 µm min?1 for the growth of sub‐centimeter graphene single crystals at temperature about 1000 °C. In addition, the temperature threshold to obtain graphene using ethane can be reduced to 750 °C, lower than the general growth temperature threshold (about 1000 °C) with methane on copper foil. Meanwhile ethane always keeps higher graphene growth rate than methane under the same growth temperature. This study demonstrates that ethane is indeed a potential carbon source for efficient growth of large single‐crystalline graphene, thus paves the way for graphene in high‐end electronical and optoelectronical applications.  相似文献   

12.
Atomically thin hexagonal boron nitride (h‐BN) is gaining significant attention for many applications such as a dielectric layer or substrate for graphene‐based devices. For these applications, synthesis of high‐quality and large‐area h‐BN layers with few defects is strongly desirable. In this work, the aligned growth of millimeter‐size single‐crystal h‐BN domains on epitaxial Ni (111)/sapphire substrates by ion beam sputtering deposition is demonstrated. Under the optimized growth conditions, single‐crystal h‐BN domains up to 0.6 mm in edge length are obtained, the largest reported to date. The formation of large‐size h‐BN domains results mainly from the reduced Ni‐grain boundaries and the improved crystallinity of Ni film. Furthermore, the h‐BN domains show well‐aligned orientation and excellent dielectric properties. In addition, the sapphire substrates can be repeatedly used with almost no limit. This work provides an effective approach for synthesizing large‐scale high‐quality h‐BN layers for electronic applications.  相似文献   

13.
Owing to inherent 2D structure, marvelous mechanical, electrical, and thermal properties, graphene has great potential as a macroscopic thin film for surface coating, composite, flexible electrode, and sensor. Nevertheless, the production of large‐area graphene‐based thin film from pristine graphene dispersion is severely impeded by its poor solution processability. In this study, a robust wetting‐induced climbing strategy is reported for transferring the interfacially assembled large‐area ultrathin pristine graphene film. This strategy can quickly convert solvent‐exfoliated pristine graphene dispersion into ultrathin graphene film on various substrates with different materials (glass, metal, plastics, and cloth), shapes (film, fiber, and bulk), and hydrophobic/hydrophilic patterns. It is also applicable to nanoparticles, nanofibers, and other exfoliated 2D nanomaterials for fabricating large‐area ultrathin films. Alternate climbing of different ultrathin nanomaterial films allows a layer‐by‐layer transfer, forming a well‐ordered layered composite film with the integration of multiple pristine nanomaterials at nanometer scale. This powerful strategy would greatly promote the development of solvent‐exfoliated pristine nanomaterials from dispersions to macroscopic thin film materials.  相似文献   

14.
The idea flat surface, superb thermal conductivity and excellent optical transmittance of single‐layer graphene promise tremendous potential for graphene as a material for transparent defoggers. However, the resistance of defoggers made from conventional transferred graphene increases sharply once both sides of the film are covered by water molecules which, in turn, leads to a temperature drop that is inefficient for fog removal. Here, the direct growth of large‐area and continuous graphene films on quartz is reported, and the first practical single‐layer graphene defogger is fabricated. The advantages of this single‐layer graphene defogger lie in its ultrafast defogging time for relatively low input voltages and excellent defogging robustness. It can completely remove fog within 6 s when supplied a safe voltage of 32 V. No visible changes in the full defogging time after 50 defogging cycles are observed. This outstanding performance is attributed to the strong interaction forces between the graphene films and the substrates, which prevents the permeation of water molecules. These directly grown transparent graphene defoggers are expected to have excellent prospects in various applications such as anti‐fog glasses, auto window and mirror defogging.  相似文献   

15.
Chemical vapor deposition is used to synthesize few‐layer graphene on micro crystalline sodium chloride (NaCl) powder. The water‐soluble nature of NaCl makes it convenient to produce free standing graphene layers via a facile and low‐cost approach. Unlike traditional metal‐catalyzed or oxygen‐aided growth, the micron‐size NaCl crystal planes play an important role in the nucleation and growth of few‐layer graphene. Moreover, the possibility of synthesizing cuboidal graphene is also demonstrated in the present approach for the first time. Raman spectroscopy, optical microscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy are used to evaluate the quality and structure of the few‐layer graphene along with cuboidal graphene obtained in this process. The few‐layer graphene synthesized using the present method has an adsorption ability for anionic and cationic dye molecules in water. The present synthesis method may pave a facile way for manufacturing few‐layer graphene on a large scale.  相似文献   

16.
The ability to control the crystal orientation of 2D van der Waals (vdW) layered materials grown on large‐scale substrates is crucial for tailoring their electrical properties, as well as for integration of functional 2D devices. In general, multiple orientations, i.e., two or four orientations, appear through the crystal rotational symmetry matching between the material and its substrate. Here, it is reported that hexagonal boron nitride (h‐BN), an ideal electric barrier in the family of 2D materials, has a single orientation on inclined Cu (1 0 1) surfaces, where the Cu planes are tilted from the (1 0 1) facet around specific in‐plane axes. Density functional theory (DFT) calculation indicates that this is a manifestation of only one favored h‐BN orientation with the minimum vdW energy on the inclined Cu (1 0 1) surface. Moreover, thanks to the high interfacial strength with the underlying Cu, the single‐orientation h‐BN is free of thermal wrinkles, and exhibits a spatially homogeneous morphology and tunnel conductance. The findings point to a feasible approach to direct growth of single‐orientation, wrinkle‐free h‐BN thin film for high‐performance 2D electrical devices, and will be of benefit for controllable synthesis of other vdW materials.  相似文献   

17.
In this study, the scalable and one‐step fabrication of single atomic‐layer transistors is demonstrated by the selective fluorination of graphene using a low‐damage CF4 plasma treatment, where the generated F‐radicals preferentially fluorinated the graphene at low temperature (<200 °C) while defect formation was suppressed by screening out the effect of ion damage. The chemical structure of the C–F bonds is well correlated with their optical and electrical properties in fluorinated graphene, as determined by X‐ray photoelectron spectroscopy, Raman spectroscopy, and optical and electrical characterizations. The electrical conductivity of the resultant fluorinated graphene (F‐graphene) was demonstrated to be in the range between 1.6 kΩ/sq and 1 MΩ/sq by adjusting the stoichiometric ratio of C/F in the range between 27.4 and 5.6, respectively. Moreover, a unique heterojunction structure of semi‐metal/semiconductor/insulator can be directly formed in a single layer of graphene using a one‐step fluorination process by introducing a Au thin‐film as a buffer layer. With this heterojunction structure, it would be possible to fabricate transistors in a single graphene film via a one‐step fluorination process, in which pristine graphene, partial F‐graphene, and highly F‐graphene serve as the source/drain contacts, the channel, and the channel isolation in a transistor, respectively. The demonstrated graphene transistor exhibits an on‐off ratio above 10, which is 3‐fold higher than that of devices made from pristine graphene. This efficient transistor fabrication method produces electrical heterojunctions of graphene over a large area and with selective patterning, providing the potential for the integration of electronics down to the single atomic‐layer scale.  相似文献   

18.
Graphene as a substrate for enhancing Raman scattering, called graphene‐enhanced Raman scattering (GERS), has been reported in previous work. Herein, it is found that the “first‐layer effect”, which is widely used to explain the chemical‐enhanced mechanism in surface‐enhanced Raman scattering (SERS), exists in the GERS system. The Langmuir–Blodgett (LB) technique is used to construct mono‐ and multilayer ordered aggregates of protoporphyrin IX (PPP). Raman spectra of PPP with different layer numbers of the LB film on graphene are collected. The Raman signal from the first monolayer LB film of PPP has a larger contribution to the Raman enhancement than that from subsequent monolayers. Meanwhile, the Raman enhancement is dependent on the molecular configuration in contact with graphene, in which the functional group of PPP in direct contact with graphene has a stronger enhancement than other groups. These results reveal that GERS is strongly dependent on the distance between graphene and the molecule, which is convincing evidence that the Raman enhancement effect based on graphene belongs to the chemical‐enhanced mechanism. This discovery provides a convenient system for the study of the chemical‐enhanced mechanism and will benefit further understanding of SERS.  相似文献   

19.
The growth of single‐crystal III‐nitride films with a low stress and dislocation density is crucial for the semiconductor industry. In particular, AlN‐derived deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) have important applications in microelectronic technologies and environmental sciences but are still limited by large lattice and thermal mismatches between the epilayer and substrate. Here, the quasi‐van der Waals epitaxial (QvdWE) growth of high‐quality AlN films on graphene/sapphire substrates is reported and their application in high‐performance DUV‐LEDs is demonstrated. Guided by density functional theory calculations, it is found that pyrrolic nitrogen in graphene introduced by a plasma treatment greatly facilitates the AlN nucleation and enables fast growth of a mirror‐smooth single‐crystal film in a very short time of ≈0.5 h (≈50% decrease compared with the conventional process), thus leading to a largely reduced cost. Additionally, graphene effectively releases the biaxial stress (0.11 GPa) and reduces the dislocation density in the epilayer. The as‐fabricated DUV‐LED shows a low turn‐on voltage, good reliability, and high output power. This study may provide a revolutionary technology for the epitaxial growth of AlN films and provide opportunities for scalable applications of graphene films.  相似文献   

20.
A reliable method to prepare a surface‐enhanced Raman scattering (SERS) active substrate is developed herein, by electrodeposition of gold nanoparticles (Au NPs) on defect‐engineered, large area chemical vapour deposition graphene (GR). A plasma treatment strategy is used in order to engineer the structural defects on the basal plane of large area single‐layer graphene. This defect‐engineered Au functionalized GR, offers reproducible SERS signals over the large area GR surface. The Raman data, along with X‐ray photoelectron spectroscopy and analysis of the water contact angle are used to rationalize the functionalization of the graphene layer. It is found that Au NPs functionalization of the “defect‐engineered” graphene substrates permits detection of concentrations as low as 10?16 m for the probe molecule Rhodamine B, which offers an outstanding molecular sensing ability. Interestingly, a Raman signal enhancement of up to ≈108 is achieved. Moreover, it is observed that GR effectively quenches the fluorescence background from the Au NPs and molecules due to the strong resonance energy transfer between Au NPs and GR. The results presented offer significant direction for the design and fabrication of ultra‐sensitive SERS platforms, and also open up possibilities for novel applications of defect engineered graphene in biosensors, catalysis, and optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号