首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li‐ion capacitors (LICs) have demonstrated great potential for bridging the gap between lithium‐ion batteries and supercapacitors in electrochemical energy storage area. The main challenge for current LICs (contain a battery‐type anode as well as a capacitor‐type cathode) lies in circumventing the mismatched electrode kinetics and cycle degradation. Herein, a mesh‐like nitrogen (N)‐doped carbon nanosheets with multiscale pore structure is adopted as both cathode and anode for a dual‐carbon type of symmetric LICs to alleviate the above mentioned problems via a facile and green synthesis approach. With rational design, this dual‐carbon LICs exhibits a broad high working voltage window (0–4.5 V), an ultrahigh energy density of 218.4 Wh kg 1 electrodes ( 229.8 Wh L 1 electrodes ), the highest power density of 22.5 kW kg 1 electrodes ( 23.7 kW L 1 electrodes ) even under an ultrahigh energy density of 97.5 Wh kg 1 electrodes ( 102.6 Wh L 1 electrodes ), as well as reasonably good cycling stability with capacity retention of 84.5% (only 0.0016% capacity loss per cycle) within 10 000 cycles under a high current density of 5 A g?1. This study provides an efficient method and option for the development of high performance LIC devices.  相似文献   

2.
Manipulating spins by ultrafast pulse laser provides a new avenue to switch the magnetization for spintronic applications. While the spin–orbit coupling is known to play a pivotal role in the ultrafast laser‐induced demagnetization, the effect of the anisotropic spin–orbit coupling on the transient magnetization remains an open issue. This study uncovers the role of anisotropic spin–orbit coupling in the spin dynamics in a half‐metallic La0.7Sr0.3MnO3 film by ultrafast pump–probe technique. The magnetic order is found to be transiently enhanced or attenuated within the initial sub‐picosecond when the probe light is tuned to be s‐ or p‐polarized, respectively. The subsequent slow demagnetization amplitude follows the fourfold symmetry of the d x 2 ? y 2 orbitals as a function of the polarization angles of the probe light. A model based on the Elliott–Yafet spin‐flip scatterings is proposed to reveal that the transient magnetization enhancement is related to the spin‐mixed states arising from the anisotropic spin–orbit coupling. The findings provide new insights into the spin dynamics in magnetic systems with anisotropic spin–orbit coupling as well as perspectives for the ultrafast control of information process in spintronic devices.  相似文献   

3.
The accurate characterization of thermal conductivity κ, particularly at high temperature, is of paramount importance to many materials, thermoelectrics in particular. The ease and access of thermal diffusivity D measurements allows for the calculation of κ when the volumetric heat capacity, ρcp, of the material is known. However, in the relation κ = ρcpD, there is some confusion as to what value of cp should be used in materials undergoing phase transformations. Herein, it is demonstrated that the Dulong–Petit estimate of cp at high temperature is not appropriate for materials having phase transformations with kinetic timescales relevant to thermal transport. In these materials, there is an additional capacity to store heat in the material through the enthalpy of transformation ΔH. This can be described using a generalized model for the total heat capacity for a material ρ c p = C p ? + Δ H ( ? ? ? / ? ? T ) p where φ is an order parameter that describes how much latent heat responds “instantly” to temperature changes. Here, C is the intrinsic heat capacity (e.g., approximately the Dulong–Petit heat capacity at high temperature). It is shown experimentally in Zn4Sb3 that the decrease in D through the phase transition at 250 K is fully accounted for by the increase in cp, while κ changes smoothly through the phase transition. Consequently, reports of κ dropping near phase transitions in widely studied materials such as PbTe and SnSe have likely overlooked the effects of excess heat capacity and overestimated the thermoelectric efficiency, zT.  相似文献   

4.
5.
6.
Platinum-rare earth metal (Pt-RE) nanoalloys are regarded as a potential high performance oxygen reduction reaction (ORR) catalyst. However, wet chemical synthesis of the nanoalloys is a crucial challenge because of the extremely high oxygen affinity of RE elements and the significantly different standard reduction potentials between Pt and RE. Here, this paper presents a molten-salt electrochemical synthetic strategy for the compositional-controlled preparation of platinum-neodymium (Pt-Nd) nanoalloy catalysts. Carbon-supported platinum-neodymium (PtxNd/C) nanoalloys, with distinct compositions of Pt5Nd and Pt2Nd, are obtained through molten-salt electrochemical deoxidation of platinum and neodymium oxide (Pt-Nd2O3) precursors supported on carbon. The PtxNd/C nanoalloys, especially the Pt5Nd/C exhibit a mass activity of 0.40 A mg−1Pt and a specific activity of 1.41 mA cm−2Pt at 0.9 V versus RHE, which are 3.1 and 7.1 times higher, respectively, than that of commercial Pt/C catalyst. More significantly, the Pt5Nd/C catalyst is remarkably stable after undergoing 20 000 accelerated durability cycles. Furthermore, the density-functional-theory (DFT) calculations confirm that the ORR catalytic performance of PtxNd/C nanoalloys is enhanced by compressive strain effect of Pt overlayer, causing a suitable weakened binding energies of O* Δ E O $\Delta {E}_{{{\rm{O}}}^*}$ and Δ E OH $\Delta {E}_{{\rm{OH}}^*}$ .  相似文献   

7.
Comb and bottlebrush polymers present a wide range of rheological and mechanical properties that can be controlled through their molecular characteristics, such as the backbone and side chain lengths as well as the number of branches per molecule or the grafting density. This review investigates the impact of these characteristics specifically on the zero shear viscosity, strain hardening behavior, and plateau shear modulus. It is shown that for a comb polymer with an entangled backbone and entangled side chains, a maximum in the strain hardening factor and minimum in the zero shear viscosity η0 can be achieved through selection of an optimum number of branches q. Bottlebrush polymers with flexible filaments and extremely low plateau shear moduli relative to linear polymers open the door for a new class of solvent‐free supersoft elastomers, where their network modulus can be controlled through both the degree of polymerization between crosslinks, nx, and the length of the side chains, nsc, with G B B 0 ρ k T n x ? 1 ( n s c + 1 ) ? 1 .  相似文献   

8.
Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long-term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co-solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g−1 and an excellent energy density of 730 Wh kg−1 at 0.1 Ag−1. In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag−1. Moreover, the cathode charge–discharge mechanism studies demonstrate a multi-step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2− ( S 8 S x 2 S 2 2 + S 2 ) ${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}}})$ , forming ZnS. On charging, the ZnS and short-chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi-step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future.  相似文献   

9.
Control chart is a useful tool to monitor the performance of the industrial or production processes. Control charts are mostly adopted to detect unfavorable variations in process location (mean) and dispersion (standard deviation) parameters. In the literature, many control charts are designed for the monitoring of process variability under the assumption that the process mean is constant over time and the standard deviation is independent of the mean. However, for many real-life processes, the standard deviation may be proportional to mean, and hence it is more appropriate to monitor the process coefficient of variation (CV). In this study, we are proposing a design structure of the Shewhart type CV control chart under neoteric ranked set sampling with an aim to improve the detection ability of the usual CV chart. A comprehensive simulation study is conducted to evaluate the performance of the proposed C V [ NRSS ] chart in terms of A R L , M D R L , and S D R L measures. Moreover, the comparison of C V [ NRSS ] chart is made with the existing competitive charts, based on simple random sampling, ranked set sampling (RSS), median RSS, and extreme RSS schemes. The results revealed that the proposed chart has better detection ability as compared to all existing competitive charts. Finally, a real-life example is presented to illustrate the working of the newly proposed CV chart.  相似文献   

10.
11.
Microelectronic devices require material systems combining multiple layers of material for proper operation. These inevitably have different properties, for example, the elastic modulus or the coefficient of thermal expansion. Permanently reoccurring Joule heating and successive cooling during the operation of such devices lead to high thermal stresses within the materials and even failure due to thermomechanical fatigue or delamination of layers. This is dependent on the internal stress state and the amount of plastic strain accumulated. Here, in situ thermomechanical cantilever bending experiments on a Si–WTi–Cu material system to investigate these internal stress states and their influence on deformation behavior using a novel experimental methodology are shown. During heating to T max = 400 ° C , the Cu layer undergoes partial plastic deformation, which may lead to the failure of a potential device using this material combination. To assess the internal stress and strain states based on the in situ observation, a model incorporating plastic deformation and known residual stresses of layers is proposed and verified by Finite Element Analysis.  相似文献   

12.
Coal fly ash (CFA) catalyzed Fenton-like process was studied under microwave (MW) irradiation for the decolorization of Rhodamine B (RhB) wastewater. The physical-chemical properties of CFA were characterized, including the specific surface area, micromorphology, chemical and crystal components, and the distribution and chemical valence of metallic elements. The metallic oxidants in the CFA indicate CFA can work as Fenton-like catalyst and MW-absorbent simultaneously. The results reveal OH is more significant in the decolorization of RhB than HO2 and O2?. The generation of more OH in the MW-Fenton-like process (293–326 K) than that in the conventional heated Fenton-like process (326 K) reflects the function of hot spot effect and possible non-thermal effect of MW. Under the optimum condition ([H2O2] 2 mmol L?1, [CFA] 15 g L?1, pH 3, PMW 0.1 kW), the decolorization rate reaches 91.6% after 20 min. The intrinsic kinetic model of RhB decolorization is -dCRhBdt=1.76×10-4·CRhB·CH2O21.89·CCFA1.97-dCRhodamineB/dt=1.76×10-4·CRhodamineB·CH2O21.89·Ccoalflyash1.97. The loss of catalytic metallic elements causes the decline of catalytic capacity of CFA. The energy consumption (4313.3 kW·h kg?1 RhB) is a limitation for the MW-Fenton-like process, which can be overcame by the safe application of nuclear energy. The intermediates and the path of RhB decolorization were detected and proposed, respectively.  相似文献   

13.
A 3D printing approach to design and produce cellular scaffolds with a precise tunable pore architecture, in terms of size, fraction, and interconnectivity is reported. Different metallic inks are formulated by mixing hydrogel with Ti–6Al–4V atomized powders of various sizes. After 3D printing by direct-ink writing (DIW) followed by debinding and sintering, the fraction and size of macropores ( D > 100 μm , designed by computer-aided design (CAD)) and micropores ( D < 10 μm , remaining after sintering), the roughness and the microstructure are determined by high-resolution X-ray tomography and electron microscopy, and correlated to the initial powder size. It is shown that playing with initial powder size allows designing different pore architectures, from interconnected micropores to fully dense filaments. These phenomena are combined with a multi-inks DIW approach to fabricate architectured structures with graded microporosity. This new route is promising for the production of functional materials, such as biomedical scaffolds or implants, with tunable osseointegration, stiffness, and strength. The micropores could also be loaded with active molecules and positioned according to release needs.  相似文献   

14.
Statistical quality control is used to improve performance of processes. Since most of the processes are multivariate in nature, multivariate process capability indices (MPCIs) have been developed by many researchers depending on the context. However, it is generally difficult to understand and calculate MPCIs, compared to their univariate counterparts like C p , C p k , and so on. This paper discusses a relatively new development in MPCIs, namely, C G ( u , v ) , which is a multivariate analogue of C p ( u , v ) —the celebrated superstructure of univariate process capability indices . Some statistical properties of C G ( u , v ) are studied, particularly of C G ( 0 , 0 ) , a member MPCI of the superstructure, which measures potential capability of a multivariate process. A threshold value of C G ( 0 , 0 ) is computed, and this can be considered as a logical cut-off for other member indices of C G ( u , v ) as well. The expression for the upper limit of the proportion of nonconformance is derived as a function of C G ( 0 , 0 ) . Density plots of asymptotic distributions of four major member indices of C G ( u , v ) , namely, C G ( 0 , 0 ) , C G ( 1 , 0 ) , C G ( 0 , 1 ) , and C G ( 1 , 1 ) , are made. Finally, a numerical example is discussed to supplement the theory developed in this paper.  相似文献   

15.
As a promising sintering technique, flash sintering utilizes high electric fields to achieve rapid densification at low furnace temperatures. Various factors can influence the densification rate during flash sintering, such as ultrahigh heating rates, extra-high sample temperatures, and electric field. However, the determining factor of the densification rate and the key mechanism during densification are still under debate. Herein, the densification and grain growth kinetic during flash sintering of 8 mol% Y2O3-stabilized ZrO2 (8YSZ) is studied experimentally and numerically using finite element method (FEM). The roles of Joule heating and heating rate on the densification are investigated by comparing flash sintering with conventional sintering. An apparently smaller activation energy for the material transport resulting in densification is obtained by flash sintering ( Q d =424 kJ mol−1) compared to the conventional sintering ( Q d = 691 kJ mol−1). In addition, a constitutive model is implemented to study both the densification and the grain growth during flash and conventional sintering. Furthermore, the effect of electrical polarity on the density and the grain size evolution during flash sintering of 8YSZ is also investigated. The simulation results of average density and grain size inhomogeneity agree well with the experimental data.  相似文献   

16.
In the process of drug discovery and disease treatment, drug repositioning is broadly studied to identify biological targets for existing drugs. Many methods have been proposed for drug–target interaction prediction by taking into account different kinds of data sources. However, most of the existing methods only use one side information for drugs or targets to predict new targets for drugs. Some recent works have improved the prediction accuracy by jointly considering multiple representations of drugs and targets. In this work, the authors propose a drug–target prediction approach by matrix completion with multi‐view side information (MCM) of drugs and proteins from both structural view and chemical view. Different from existing studies for drug–target prediction, they predict drug–target interaction by directly completing the interaction matrix between them. The experimental results show that the MCM method could obtain significantly higher accuracies than the comparison methods. They finally report new drug–target interactions for 26 FDA‐approved drugs, and biologically discuss these targets using existing references.Inspec keywords: proteins, diseases, medical computing, drugs, genetics, molecular biophysicsOther keywords: drug–target interaction prediction, prediction accuracy, matrix completion, multiview side information, structural view, chemical view, drug repositioning, drug discovery, biological targets, FDA‐approved drugs

Nomenclature

P
md×mt known drug–target interaction matrix
As
kd×kt complete low‐rank matrix in the structural view
Ac
kd×kt complete low‐rank matrix in the chemical view
Wds
md×md drug–drug similarity matrix in the structural view
Wts
mt×mt target–target similarity matrix in the structural view
Wdt
md×md drug–drug similarity matrix in the chemical view
Wtt
mt×mt target–target similarity matrix in the chemical view
Ds
md×kd drugs feature matrix in the structural view
Gs
mt×kt protein targets feature matrix in the structural view
Dc
md×kd drugs feature matrix in the chemical view
Gc
mt×kt protein targets feature matrix in the chemical view
Q
md×mt the common complete drug–target interaction matrix
Z
kd×kt any given matrix
,
inner product for matrices
gradient operator
λ1, λ2
trade‐off parameters
  相似文献   

17.
2D materials are promising candidates for next‐generation electronic devices. In this regime, insulating 2D ferromagnets, which remain rare, are of special importance due to their potential for enabling new device architectures. Here the discovery of ferromagnetism is reported in a layered van der Waals semiconductor, VI3, which is based on honeycomb vanadium layers separated by an iodine–iodine van der Waals gap. It has a BiI3‐type structure ( R 3 ¯ , No.148) at room temperature, and the experimental evidence suggests that it may undergo a subtle structural phase transition at 78 K. VI3 becomes ferromagnetic at 49 K, below which magneto‐optical Kerr effect imaging clearly shows ferromagnetic domains, which can be manipulated by the applied external magnetic field. The optical bandgap determined by reflectance measurements is 0.6 eV, and the material is highly resistive.  相似文献   

18.
Development of the numerical contact algorithms for finite element method usually concerns convergence, mesh dependency, etc. Verification of the numerical contact algorithm usually includes only a few cases due to a limited number of available analytic solutions (e.g., the Hertz solution for cylindrical surfaces). The solution of the generalized Euler–Eytelwein, or the belt friction problem is a stand alone task, recently formulated for a rope laying in sliding equilibrium on an arbitrary surface, opens up to a new set of benchmark problems for the verification of rope/beam to surface/solid contact algorithms. Not only a pulling forces ratio T T 0 , but also the position of a curve on a arbitrary rigid surface withstanding the motion in dragging direction should be verified. Particular situations possessing a closed form solution for ropes and rigid surfaces are analyzed. The verification study is performed employing the specially developed Solid-Beam finite element with both linear and C 1 -continuous approximations together with the Curve-to-Solid Beam (CTSB) contact algorithm and exemplary employing commercial finite element software. A crucial problem of "contact locking" in contact elements showing stiff behavior despite the good convergence is identified. This problem is resolved within the developed CTSB contact element.  相似文献   

19.
Thermoelectric (TE) films, which are normally fabricated by MicroElectroMechanical-Systems (MEMS) technology, are crucial for the development of micro-TE devices (e.g., Peltier coolers for hot-spot cooling, TE generators). However, achieving a significant TE property (e.g., high power factor) of TE films and a low-cost fabrication process is challenging. A novel fabrication technique named PowderMEMS to fabricate high-performance, low-cost TE films, and micro-patterns is presented in this article. The TE film is based on agglomeration of micro-sized N-type Bi 2 Te 2.5 Se 0.5 (BTS) powders with stoichiometric composition by the molten binder bismuth (Bi). The influence of the key process parameters (e.g., the weight ratio between the TE powder and the binder, the hot-pressing duration, and pressure) on the TE performance is investigated. The TE film exhibits a maximum power factor of 1.7 mW m 1 K 2 at room temperature, which is the highest value reported so far for the state-of-the-art TE thick film (thickness > 10 μm). Besides, the PowderMEMS-based TE films are successfully patterned to the micro-pillar array, which opens up a new MEMS-compatible approach for manufacturing micro-TE devices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号