首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
The efficiency of organic solar cells can benefit from multijunction device architectures, in which energy losses are substantially reduced. Herein, recent developments in the field of solution‐processed multijunction organic solar cells are described. Recently, various strategies have been investigated and implemented to improve the performance of these devices. Next to developing new materials and processing methods for the photoactive and interconnecting layers, specific layers or stacks are designed to increase light absorption and improve the photocurrent by utilizing optical interference effects. These activities have resulted in power conversion efficiencies that approach those of modern thin film photovoltaic technologies. Multijunction cells require more elaborate and intricate characterization procedures to establish their efficiency correctly and a critical view on the results and new insights in this matter are discussed. Application of multijunction cells in photoelectrochemical water splitting and upscaling toward a commercial technology is briefly addressed.  相似文献   

3.
4.
Key aspects of Organic Photovoltaics (OPVs) have been reviewed in this tutorial. Issues pertaining to the choice of materials, fabrication processes, photophysical mechanisms, device characterization, morphology of active layers and manufacturing are discussed. Special emphasis has been given to recent developments in large-area modules. Current strategies in enhancing the performance using external optical engineering approaches have also been highlighted. OPVs as a technology combine low weight, flexibility, low cost, good form factor and high-throughput processing; making them a promising PV technology for the future.  相似文献   

5.
6.
7.
    
Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier.  相似文献   

8.
9.
    
All‐polymer solar cells (all‐PSCs) exhibit excellent stability and readily tunable ink viscosity, and are therefore especially suitable for printing preparation of large‐scale devices. At present, the efficiency of state‐of‐the‐art all‐PSCs fabricated by the spin‐coating method has exceeded 11%, laying the foundation for the preparation and practical utilization of printed devices. A high power conversion efficiency (PCE) of 11.76% is achieved based on PTzBI‐Si:N2200 all‐PSCs processing with 2‐methyltetrahydrofuran (MTHF, an environmentally friendly solvent) and preparation of active layers by slot die printing, which is the top efficient for all‐PSCs. Conversely, the PCE of devices processed by high‐boiling point chlorobenzene is less than 2%. Through the study of film formation kinetics, volatile solvents can freeze the morphology in a short time, and a more rigid conformation with strong intermolecular interaction combined with the solubility limit of PTzBI‐Si and N2200 in MTHF results in the formation of a fibril network in the bulk heterojunction. The multilength scaled morphology ensures fast transfer of carriers and facilitates exciton separation, which boosts carrier mobility and current density, thus improving the device performance. These results are of great significance for large‐scale printing fabrication of high‐efficiency all‐PSCs in the future.  相似文献   

10.
    
With developments in materials, thin-film processing, fine-tuning of morphology, and optimization of device fabrication, the performance of organic solar cells (OSCs) has improved markedly in recent years. Designing low-bandgap materials has been a focus in order to maximize solar energy conversion. However, there are only a few successful low-bandgap donor materials developed with near-infrared (NIR) absorption that are well matched to the existing efficient acceptors. Porphyrin has shown great potential as a useful building block for constructing low-bandgap donor materials due to its large conjugated plane and strong absorption. Porphyrin-based donor materials have been shown to contribute to many record-high device efficiencies in small molecule, tandem, ternary, flexible, and OSC/perovskite hybrid solar cells. Specifically, non-fullerene small-molecule solar cells have recently shown a high power conversion efficiency of 12% using low-bandgap porphyrin. All these have validated the great potential of porphyrin derivatives as effective donor materials and made DPPEZnP-TRs a family of best low-bandgap donor materials in the OSC field so far. Here, recent progress in the rational design, morphology, dynamics, and multi-functional applications starting from 2015 will be highlighted to deepen understanding of the structure–property relationship. Finally, some future directions of porphyrin-based OSCs are presented.  相似文献   

11.
12.
13.
    
High‐efficiency small‐molecule‐based organic photovoltaics (SM‐OPVs) using two electron donors (p ‐DTS(FBTTh2)2 and ZnP) with distinctively different absorption and structural features are reported. Such a combination works well and synergically improves device short‐circuit current density (J sc) to 17.99 mA cm?2 and fill factor (FF) to 77.19%, yielding a milestone efficiency of 11%. To the best of our knowledge, this is the highest power conversion efficiency reported for SM‐OPVs to date and the first time to combine high J sc over 17 mA cm?2 and high FF over 77% into one SM‐OPV. The strategy of using multicomponent materials, with a selecting role of balancing varied electronic and structural necessities can be an important route to further developing higher performance devices. This development is important, which broadens the dimension and versatility of existing materials without much chemistry input.  相似文献   

14.
15.
  总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
18.
Abstract

Tinted and colour-neutral semitransparent organic photovoltaic elements are of interest for building-integrated applications in windows, on glass roofs or on facades. We demonstrate a semitransparent organic photovoltaic cell with a dry-laminated top electrode that achieves a uniform average visible transmittance of 51% and a power conversion efficiency of 3%. The photo-active material is based on a majority blend composed of a visibly absorbing donor polymer and a fullerene acceptor, to which a selective near-infrared absorbing cyanine dye is added as a minority component. Our results show that organic ternary blends are attractive for the fabrication of semitransparent solar cells in general, because a guest component with a complementary absorption can compensate for the inevitably reduced current generation capability of a high-performing binary blend when applied as a thin, semitransparent film.  相似文献   

19.
    
Organic Photovoltaics (OPV) is a very promising technology to harvest artificial illumination and power smart devices of the Internet of Things (IoT). Efficiencies as high as 30.2% have been reported for OPVs under warm white light-emitting diode (LED) light. This is due to the narrow spectrum of indoor light, which leads to an optimal bandgap of ≈1.9 eV. Under full sunlight, OPV devices often suffer from poor stability compared to the established inorganic PV technologies such as crystalline silicon. This study focuses on a potentially very cost-effective Indium Tin Oxide (ITO) free cell stack with absorber materials processed from non-halogenated solvents. These organic solar cells and modules with efficiencies up to 21% can already achieve remarkable stabilities under typical indoor illumination. Aging under 50,000 lux LED lighting leads to very little degradation after more than 11 000 h. This light dose corresponds to more than 110 years under 500 lux. For modules encapsulated with a flexible barrier, extrapolated lifetimes of more than 41 years are achieved. This shows that OPV is mature for the specific application under indoor illumination. Due to the large number of potential organic semiconducting materials, further efficiency increase can be expected.  相似文献   

20.
    
Recently, a new type of active layer with a ternary system has been developed to further enhance the performance of binary system organic photovoltaics (OPV). In the ternary OPV, almost all active layers are formed by simple ternary blend in solution, which eventually leads to the disordered bulk heterojunction (BHJ) structure after a spin‐coating process. There are two main restrictions in this disordered BHJ structure to obtain higher performance OPV. One is the isolated second donor or acceptor domains. The other is the invalid metal–semiconductor contact. Herein, the concept and design of donor/acceptor/acceptor ternary OPV with more controlled structure (C‐ternary) is reported. The C‐ternary OPV is fabricated by a sequential solution process, in which the second acceptor and donor/acceptor binary blend are sequentially spin‐coated. After the device optimization, the power conversion efficiencies (PCEs) of all OPV with C‐ternary are enhanced by 14–21% relative to those with the simple ternary blend; the best PCEs are 10.7 and 11.0% for fullerene‐based and fullerene‐free solar cells, respectively. Moreover, the averaged PCE value of 10.4% for fullerene‐free solar cell measured in this study is in great agreement with the certified one of 10.32% obtained from Newport Corporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号