首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The power conversion efficiencies (PCEs) of state‐of‐the‐art organic solar cells (OSCs) have increased to over 13%. However, the most commonly used solvents for making the solutions of photoactive materials and the coating methods used in laboratories are not adaptable for future practical production. Therefore, taking a solution‐coating method with environmentally friendly processing solvents into consideration is critical for the practical utilization of OSC technology. In this study, a highly efficient PBTA‐TF:IT‐M‐based device processed with environmentally friendly solvents, tetrahydrofuran/isopropyl alcohol (THF/IPA) and o‐xylene/1‐phenylnaphthalene, is fabricated; a high PCE of 13.1% can be achieved by adopting the spin‐coating method, which is the top result for OSCs. More importantly, a blade‐coated non‐fullerene OSC processed with THF/IPA is demonstrated for the first time to obtain a promising PCE of 11.7%; even for the THF/IPA‐processed large‐area device (1.0 cm2) made by blade‐coating, a PCE of 10.6% can still be maintained. These results are critical for the large‐scale production of highly efficient OSCs in future studies.  相似文献   

2.
Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic‐perovskite/organic four‐terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr3 perovskite solar cell (pero‐SC) as the top cell and an OSC as bottom cell is constructed. The high‐quality CsPbBr3 photoactive layer of the planar pero‐SC is prepared with a dual‐source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr2 with a low evaporation rate. The resultant opaque planar pero‐SC exhibits an ultrahigh open‐circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr3‐based planar pero‐SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero‐SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero‐SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV‐light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic‐perovskite/organic TSC.  相似文献   

3.
Herein, poly(vinylpyrrolidone) (PVP) is used as the cathode interlayer (CIL) through the self‐organization method in inverted organic solar cells (OSCs). By coating a solution of PVP and active layer materials onto a glass/indium tin oxide (ITO) substrate, the PVP can segregate to the near ITO side due to its high surface energy and strong intermolecular interaction with the ITO electrode. The power conversion efficiency (PCE) of the obtained OSC device reaches 13.3%, much higher than that of the control device with a PCE of only 10.1%. The improvement results from the increased exciton dissociation efficiency and the depressed trap‐assisted recombination, which can be attributed to the reduced work function of the cathode by the self‐organized PVP. Additionally, the molecular weight of the PVP has almost no influence on the device performance, and the PVP‐modified device presents superior stability. This method can also be applied in other highly efficient fullerene‐free OSCs, and with a fine selection of the active layer, a high PCE of 14.0% is obtained. Overall, this work demonstrates the great potential of the PVP‐based CIL in inverted OSCs fabricated via the self‐organization method.  相似文献   

4.
Slot-die coating is generally regarded as the most effective large-scale methodology for the fabrication of organic solar cells (OSCs). However, the corresponding device performance significantly lags behind spin-coated devices. Herein, the active layer morphology, flexible substrate properties, and the processing temperature are optimized synergistically to obtain high power conversion efficiency (PCE) for both the flexible single cells and the modules. As a result, the 1 cm2 flexible devices produce an excellent PCE of 12.16% as compared to 12.37% for the spin-coated small-area (0.04 cm2) rigid devices. Likewise, for modules with an area of 25 cm2, an extraordinary PCE of 10.09% is observed. Hence, efficiency losses associated with the upscaling are significantly reduced by the synergistic optimization. Moreover, after 1000 bending cycles at a bending radius of 10 mm, the flexible devices still produce over 99% of their initial PCE, whereas after being stored for over 6000 h in a glove box, the PCE reaches 103% of its initial value, indicating excellent device flexibility as well as superior shelf stability. These results, thus, are a promising confirmation the great potential for upscaling of large-area OSCs in the near future.  相似文献   

5.
Ternary heterojunction strategies appear to be an efficient approach to improve the efficiency of organic solar cells (OSCs) through harvesting more sunlight. Ternary OSCs are fabricated by employing wide bandgap polymer donor (PM6), narrow bandgap nonfullerene acceptor (Y6), and PC71BM as the third component to tune the light absorption and morphologies of the blend films. A record power conversion efficiency (PCE) of 16.67% (certified as 16.0%) on rigid substrate is achieved in an optimized PM6:Y6:PC71BM blend ratio of 1:1:0.2. The introduction of PC71BM endows the blend with enhanced absorption in the range of 300–500 nm and optimises interpenetrating morphologies to promote photogenerated charge dissociation and extraction. More importantly, a PCE of 14.06% for flexible ITO‐free ternary OSCs is obtained based on this ternary heterojunction system, which is the highest PCE reported for flexible state‐of‐the‐art OSCs. A very promising ternary heterojunction strategy to develop highly efficient rigid and flexible OSCs is presented.  相似文献   

6.
Nonfullerene (NF) organic solar cells (OSCs) have been attracting significant attention in the past several years. It is still challenging to achieve high‐performance flexible NF OSCs. NF acceptors are chemically reactive and tend to react with the low‐temperature‐processed low‐work‐function (low‐WF) interfacial layers, such as polyethylenimine ethoxylated (PEIE), which leads to the “S” shape in the current‐density characteristics of the cells. In this work, the chemical interaction between the NF active layer and the polymer interfacial layer of PEIE is deactivated by increasing its protonation. The PEIE processed from aqueous solution shows more protonated N+ than that processed from isopropyl alcohol solution, observed from X‐ray photoelectron spectroscopy. NF solar cells (active layer: PCE‐10:IEICO‐4F) with the protonated PEIE interfacial layer show an efficiency of 13.2%, which is higher than the reference cells with a ZnO interlayer (12.6%). More importantly, the protonated PEIE interfacial layer processed from aqueous solution does not require a further thermal annealing treatment (only processing at room temperature). The room‐temperature processing and effective WF reduction enable the demonstration of high‐performance (12.5%) flexible NF OSCs.  相似文献   

7.
With the rapid advance of organic photovoltaic materials, the energy level structure, active layer morphology, and fabrication procedure of organic solar cells (OSCs) are changed significantly. Thus, the photoelectronic properties of many traditional electrode interlayers have become unsuitable for modifying new active layers; this limits the further enhancement in OSC efficiencies. Herein, a new design strategy of tailoring the end-capping unit, ITIC, to develop a cathode interlayer (CIL) material for achieving high power conversion efficiency (PCE) in OSCs is demonstrated. The excellent electron accepting capacity, suitable energy level, and good film-forming ability endow the S-3 molecule with an outstanding electron extraction property. A device with S-3 shows a PCE of 16.6%, which is among the top values in the field of OSCs. More importantly, it is demonstrated that the electrostatic potential difference between the CIL molecule and the polymer donor plays a crucial role in promoting exciton dissociation at the CIL/active layer interface, contributing to additional charge generation; this is crucial for enhancement of the current density. The results of this work not only develop a new design strategy for high-performance CIL, but also demonstrate a reliable approach of density functional theory (DFT) calculation to predict the effect of the CIL chemical structure on exciton dissociation in OSCs.  相似文献   

8.
To make organic solar cells (OSCs) more competitive in the diverse photovoltaic cell technologies, it is very important to demonstrate that OSCs can achieve very good efficiencies and that their cost can be reduced. Here, a pair of nonfullerene small‐molecule acceptors, IT‐2Cl and IT‐4Cl, is designed and synthesized by introducing easy‐synthesis chlorine substituents onto the indacenodithieno[3,2‐b]thiophene units. The unique feature of the large dipole moment of the C? Cl bond enhances the intermolecular charge‐transfer effect between the donor–acceptor structures, and thus expands the absorption and down shifts the molecular energy levels. Meanwhile, the introduction of C? Cl also causes more pronounced molecular stacking, which also helps to expand the absorption spectrum. Both of the designed OSCs devices based on two acceptors can deliver a power conversion efficiency (PCE) greater than 13% when blended with a polymer donor with a low‐lying highest occupied molecular orbital level. In addition, since IT‐2Cl and IT‐4Cl have very good compatibility, a ternary OSC device integrating these two acceptors is also fabricated and obtains a PCE greater than 14%. Chlorination demonstrates effective ability in enhancing the device performance and facile synthesis route, which both deserve further exploitation in the modification of photovoltaic materials.  相似文献   

9.
在本工作中,我们制备了一种多孔的有机/无机复合电子传输层(P-ZnO),并将其成功用于反向有机太阳能电池中.P-ZnO不仅拥有适宜的功函,且可形成较大欧姆接触面积的独特表面,有利于器件中的电荷提取.与ZnO基器件相比,P-ZnO基器件的活性层具有增强的光陷阱效应.在PBDB-T/DTPPSe-2F,PM6/Y6和PTB...  相似文献   

10.
The commercialization of nonfullerene organic solar cells (OSCs) critically relies on the response under typical operating conditions (for instance, temperature and humidity) and the ability of scale‐up. Despite the rapid increase in power conversion efficiency (PCE) of spin‐coated devices fabricated in a protective atmosphere, the efficiencies of printed nonfullerene OSC devices by blade coating are still lower than 6%. This slow progress significantly limits the practical printing of high‐performance nonfullerene OSCs. Here, a new and relatively stable nonfullerene combination is introduced by pairing the nonfluorinated acceptor IT‐M with the polymeric donor FTAZ. Over 12% efficiency can be achieved in spin‐coated FTAZ:IT‐M devices using a single halogen‐free solvent. More importantly, chlorine‐free, blade coating of FTAZ:IT‐M in air is able to yield a PCE of nearly 11% despite a humidity of ≈50%. X‐ray scattering results reveal that large π–π coherence length, high degree of face‐on orientation with respect to the substrate, and small domain spacing of ≈20 nm are closely correlated with such high device performance. The material system and approach yield the highest reported performance for nonfullerene OSC devices by a coating technique approximating scalable fabrication methods and hold great promise for the development of low‐cost, low‐toxicity, and high‐efficiency OSCs by high‐throughput production.  相似文献   

11.
Semitransparent organic solar cells (OSCs) show attractive potential in power‐generating windows. However, the development of semitransparent OSCs is lagging behind opaque OSCs. Here, an ultralow‐bandgap nonfullerene acceptor, “IEICO‐4Cl”, is designed and synthesized, whose absorption spectrum is mainly located in the near‐infrared region. When IEICO‐4Cl is blended with different polymer donors (J52, PBDB‐T, and PTB7‐Th), the colors of the blend films can be tuned from purple to blue to cyan, respectively. Traditional OSCs with a nontransparent Al electrode fabricated by J52:IEICO‐4Cl, PBDB‐T:IEICO‐4Cl, and PTB7‐Th:IEICO‐4Cl yield power conversion efficiencies (PCE) of 9.65 ± 0.33%, 9.43 ± 0.13%, and 10.0 ± 0.2%, respectively. By using 15 nm Au as the electrode, semitransparent OSCs based on these three blends also show PCEs of 6.37%, 6.24%, and 6.97% with high average visible transmittance (AVT) of 35.1%, 35.7%, and 33.5%, respectively. Furthermore, via changing the thickness of Au in the OSCs, the relationship between the transmittance and efficiency is studied in detail, and an impressive PCE of 8.38% with an AVT of 25.7% is obtained, which is an outstanding value in the semitransparent OSCs.  相似文献   

12.
The past two decades of vigorous interdisciplinary approaches has seen tremendous breakthroughs in both scientific and technological developments of bulk‐heterojunction organic solar cells (OSCs) based on nanocomposites of π‐conjugated organic semiconductors. Because of their unique functionalities, the OSC field is expected to enable innovative photovoltaic applications that can be difficult to achieve using traditional inorganic solar cells: OSCs are printable, portable, wearable, disposable, biocompatible, and attachable to curved surfaces. The ultimate objective of this field is to develop cost‐effective, stable, and high‐performance photovoltaic modules fabricated on large‐area flexible plastic substrates via high‐volume/throughput roll‐to‐roll printing processing and thus achieve the practical implementation of OSCs. Recently, intensive research efforts into the development of organic materials, processing techniques, interface engineering, and device architectures have led to a remarkable improvement in power conversion efficiencies, exceeding 11%, which has finally brought OSCs close to commercialization. Current research interests are expanding from academic to industrial viewpoints to improve device stability and compatibility with large‐scale printing processes, which must be addressed to realize viable applications. Here, both academic and industrial issues are reviewed by highlighting historically monumental research results and recent state‐of‐the‐art progress in OSCs. Moreover, perspectives on five core technologies that affect the realization of the practical use of OSCs are presented, including device efficiency, device stability, flexible and transparent electrodes, module designs, and printing techniques.  相似文献   

13.
Organic bulk heterojunction solar cells (OSCs) and hybrid halide perovskite solar cells (PSCs) are two promising photovoltaic techniques for next‐generation energy conversion devices. The rapid increase in the power conversion efficiency (PCE) in OSCs and PSCs has profited from synergetic progresses in rational material synthesis for photoactive layers, device processing, and interface engineering. Interface properties in these two types of devices play a critical role in dictating the processes of charge extraction, surface trap passivation, and interfacial recombination. Therefore, there have been great efforts directed to improving the solar cell performance and device stability in terms of interface modification. Here, recent progress in interfacial doping with biopolymers and ionic salts to modulate the cathode interface properties in OSCs is reviewed. For the anode interface modification, recent strategies of improving the surface properties in widely used PEDOT:PSS for narrowband OSCs or replacing it by novel organic conjugated materials will be touched upon. Several recent approaches are also in focus to deal with interfacial traps and surface passivation in emerging PSCs. Finally, the current challenges and possible directions for the efforts toward further boosts of PCEs and stability via interface engineering are discussed.  相似文献   

14.
The quest for sustainable energy sources has led to accelerated growth in research of organic solar cells (OSCs). A solution‐processed bulk‐heterojunction (BHJ) OSC generally contains a donor and expensive fullerene acceptors (FAs). The last 20 years have been devoted by the OSC community to developing donor materials, specifically low bandgap polymers, to complement FAs in BHJs. The current improvement from ≈2.5% in 2013 to 17.3% in 2018 in OSC performance is primarily credited to novel nonfullerene acceptors (NFA), especially fused ring electron acceptors (FREAs). FREAs offer unique advantages over FAs, like broad absorption of solar radiation, and they can be extensively chemically manipulated to tune optoelectronic and morphological properties. Herein, the current status in FREA‐based OSCs is summarized, such as design strategies for both wide and narrow bandgap FREAs for BHJ, all‐small‐molecule OSCs, semi‐transparent OSC, ternary, and tandem solar cells. The photovoltaics parameters for FREAs are summarized and discussed. The focus is on the various FREA structures and their role in optical and morphological tuning. Besides, the advantages and drawbacks of both FAs and NFAs are discussed. Finally, an outlook in the field of FREA‐OSCs for future material design and challenges ahead is provided.  相似文献   

15.
In this work, a highly efficient parallel connected tandem solar cell utilizing a nonfullerene acceptor is demonstrated. Guided by optical simulation, each of the active layer thicknesses of subcells are tuned to maximize its light trapping without spending intense effort to match photocurrent. Interestingly, a strong optical microcavity with dual oscillation centers is formed in a back subcell, which further enhances light absorption. The parallel tandem device shows an improved photon‐to‐electron response over the range between 450 and 800 nm, and a high short‐circuit current density (J SC) of 17.92 mA cm?2. In addition, the subcells show high fill factors due to reduced recombination loss under diluted light intensity. These merits enable an overall power conversion efficiency (PCE) of >10% for this tandem cell, which represents a ≈15% enhancement compared to the optimal single‐junction device. Further application of the designed parallel tandem configuration to more efficient single‐junction cells enable a PCE of >11%, which is the highest efficiency among all parallel connected organic solar cells (OSCs). This work stresses the importance of employing a parallel tandem configuration for achieving efficient light harvesting in nonfullerene‐based OSCs. It provides a useful strategy for exploring the ultimate performance of organic solar cells.  相似文献   

16.
All‐solution‐processing at low temperatures is important and desirable for making printed photovoltaic devices and also offers the possibility of a safe and cost‐effective fabrication environment for the devices. Herein, an all‐solution‐processed flexible organic solar cell (OSC) using poly(3,4‐ethylenedioxythiophene):poly‐(styrenesulfonate) electrodes is reported. The all‐solution‐processed flexible devices yield the highest power conversion efficiency of 10.12% with high fill factor of over 70%, which is the highest value for metal‐oxide‐free flexible OSCs reported so far. The enhanced performance is attributed to the newly developed gentle acid treatment at room temperature that enables a high‐performance PEDOT:PSS/plastic underlying substrate with a matched work function (≈4.91 eV), and the interface engineering that endows the devices with better interface contacts and improved hole mobility. Furthermore, the flexible devices exhibit an excellent mechanical flexibility, as indicated by a high retention (≈94%) of the initial efficiency after 1000 bending cycles. This work provides a simple route to fabricate high‐performance all‐solution‐processed flexible OSCs, which is important for the development of printing, blading, and roll‐to‐roll technologies.  相似文献   

17.
Organic solar cells (OSCs) are one of the most promising cost‐effective options for utilizing solar energy, and, while the field of OSCs has progressed rapidly in device performance in the past few years, the stability of nonfullerene OSCs has received less attention. Developing devices with both high performance and long‐term stability remains challenging, particularly if the material choice is restricted by roll‐to‐roll and benign solvent processing requirements and desirable mechanical durability. Building upon the ink (toluene:FTAZ:IT‐M) that broke the 10% benchmark when blade‐coated in air, a second donor material (PBDB‐T) is introduced to stabilize and enhance performance with power conversion efficiency over 13% while keeping toluene as the solvent. More importantly, the ternary OSCs exhibit excellent thermal stability and storage stability while retaining high ductility. The excellent performance and stability are mainly attributed to the inhibition of the crystallization of nonfullerene small‐molecular acceptors (SMAs) by introducing a stiff donor that also shows low miscibility with the nonfullerene SMA and a slightly higher highest occupied molecular orbital (HOMO) than the host polymer. The study indicates that improved stability and performance can be achieved in a synergistic way without significant embrittlement, which will accelerate the future development and application of nonfullerene OSCs.  相似文献   

18.
A family of the SM‐axis series based on benzo[1,?2‐?b:4,?5‐?b′]?dithiophene and 3‐ethylrhodanine (RD) units with structurally different π‐conjugation systems are synthesized as a means to understand the structure–property relationship of conjugated pathways in ternary non‐fullerene organic solar cells (NF‐OSCs) as a third component. The optical and electrochemical properties of the SM‐axis are highly sensitive both to the functionalized direction and to the number of RD groups. Enhanced power conversion efficiencies (PCEs) of over 11% in ternary devices are obtained by incorporating optimal SM‐X and SM‐Y contents from PBDB‐T:ITIC binary NF‐OSCs, while a slightly lower PCE is observed with the addition of SM‐XY. The results of in‐depth studies using various characterization techniques demonstrate that working mechanisms of SM‐axis‐based ternary NF‐OSCs are distinctly different from one another: an energy‐transfer mechanism with an alloy‐like model for SM‐X, a charge transfer with the same model for SM‐Y, and an energy transfer without such a structure for SM‐XY. As extension of the scope, a SM‐X‐based ternary NF‐OSC in the PM6:IT4F system also shows a greatly enhanced PCE of over 13%. The findings provide insights into the effects of conjugated pathways of organic semiconductors on mechanisms of ternary NF‐OSCs, advancing the understanding for synthetic chemists, materials engineers, and device physicists.  相似文献   

19.
Black phosphorous quantum dots (BPQDs) possess ambipolar charge transport, high mobility, and a tunable direct bandgap. Here, liquid‐exfoliated BPQDs are used as interlayers to modify both the electron transport layer and hole transport layer in organic solar cells (OSCs). The incorporation of BPQDs is beneficial to the formation of a cascade band structure and electron/hole transfer and extraction. The power conversion efficiency of the BPQDs‐incorporated OSC based on PTB7‐Th:FOIC blend is enhanced from 11.8% to 13.1%. In addition, power conversion efficiency enhancement is also achieved for other nonfullerene and fullerene‐based devices, demonstrating the universality of this interlayer methodology.  相似文献   

20.
The printing of large‐area organic solar cells (OSCs) has become a frontier for organic electronics and is also regarded as a critical step in their industrial applications. With the rapid progress in the field of OSCs, the highest power conversion efficiency (PCE) for small‐area devices is approaching 15%, whereas the PCE for large‐area devices has also surpassed 10% in a single cell with an area of ≈1 cm2. Here, the progress of this fast developing area is reviewed, mainly focusing on: 1) material requirements (materials that are able to form efficient thick active layer films for large‐area printing); 2) modular designs (effective designs that can suppress electrical, geometric, optical, and additional losses, leading to a reduction in the PCE of the devices, as a consequence of substrate area expansion); and 3) printing methods (various scalable fabrication techniques that are employed for large‐area fabrication, including knife coating, slot‐die coating, screen printing, inkjet printing, gravure printing, flexographic printing, pad printing, and brush coating). By combining thick‐film material systems with efficient modular designs exhibiting low‐efficiency losses and employing the right printing methods, the fabrication of large‐area OSCs will be successfully realized in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号