共查询到19条相似文献,搜索用时 0 毫秒
1.
2.
Damien Hudry Ian A. Howard Radian Popescu Dagmar Gerthsen Bryce S. Richards 《Advanced materials (Deerfield Beach, Fla.)》2019,31(26)
The production of upconverting nanostructures with tailored optical properties is of major technological interest, and rapid progress toward the realization of such production has been made in recent years. Ultimately, accurate understanding of nanostructure organization will lead to design rules for accurately tailoring optical properties. Here, the context of open questions still of general importance to the upconversion and nanocrystal communities is presented, with a particular emphasis on the structure–property relationships of core–shell upconverting nanocrystals. Although the optical properties of the latter have been thoroughly investigated, little is known regarding their atomic‐scale organization. Indeed, solving the atomic‐scale structure of such nanomaterials is challenging because of their intrinsic nonperiodic nature. Familiar concepts of crystallography are no longer appropriate; chemical and structural modulation waves must be introduced. To reveal the exact core–shell structures, innovative characterization techniques need to be applied and developed, as discussed herein. The continued development and application of structural characterization techniques will be vital to consolidate the currently incomplete link between atomic‐scale structure and upconversion properties. This will ultimately provide a valuable contribution to the emerging detailed guidelines on how to better design upconverting nanostructures to achieve given optical properties in terms of efficiency, absorption, spectral emission, and dynamics. 相似文献
3.
Zijian Zhou Lijiao Yang Jinhao Gao Xiaoyuan Chen 《Advanced materials (Deerfield Beach, Fla.)》2019,31(8)
Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon–Bloembergen–Morgan and the outer‐sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure–relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields. 相似文献
4.
5.
6.
7.
8.
9.
Zengjie Fan Bing Ding Tengfei Zhang Qingyang Lin Victor Malgras Jie Wang Hui Dou Xiaogang Zhang Yusuke Yamauchi 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(46)
Solid polymer electrolytes (SPEs)‐based all‐solid‐state lithium–sulfur batteries (ASSLSBs) have attracted extensive research attention due to their high energy density and safe operation, which provide potential solutions to the increasing need for harnessing higher energy densities. There is little progress made, however, in the development of ASSLSBs to improve simultaneously energy density and long‐term cycling life, mostly due to the “shuttle effect” of lithium polysulfide intermediates in the SPEs and the low interfacial compatibility between the metal lithium anode and the SPE. In this work, the issues of solid/solid interfacial architecturing through atomic layer deposition of Al2O3 on poly(ethylene oxide)‐lithium bis(trifluoromethanesulfonyl)imide SPE surface are effectively addressed. The Al2O3 coating promotes the suppression of lithium dendrite formation for over 500 h. ASSLSBs fabricated with two layers of Al2O3‐coated SPE deliver high gravimetric/areal capacity and Coulombic efficiency, as well as excellent cycling stability and extremely low self‐discharge rate. This work provides not only a simple and effective approach to boost the electrochemical performances of SPE‐based ASSLSBs, but also enriches the fundamental understanding regarding the underlying mechanism responsible for their performance. 相似文献
10.
Abstract: In this paper, micro‐mechanical properties of styrene–butadiene rubber (SBR) latex‐modified cement pastes identified by means of the nanoindentation (NI) technique are related to macro‐mechanical properties of SBR latex‐modified mortars obtained from standard test methods, considering an SBR latex/cement ratio varying from 0% to 20%. For this purpose, the average value of the hardness and the so‐called indentation modulus of the different material phases of the cement paste, i.e. calcium–silicate–hydrate (CSH), portlandite, anhydrous cement, etc., obtained from NI are compared with the compressive and flexural strengths, on the one hand, and the dynamic elastic modulus of SBR latex‐modified mortars, on the other hand. This comparison revealed a linear correlation between the dynamic elastic modulus and the indentation modulus and between the compressive strength, flexural strength and hardness. Thus, the obtained results clearly indicate the finer‐scale origin of the macroscopic elastic and strength properties, linking the mechanical properties at the so‐called mortar scale to the cement‐paste scale. 相似文献
11.
12.
Cengiz Caner 《Packaging Technology and Science》2004,17(2):105-111
The sorption of D ‐limonene into polymeric structures in contact with food simulant liquids (ethanol and acetic acid solutions) was determined using two methods, liquid extraction (LE) and dynamic thermal stripping–thermal desorption (DTS–TD). The polymeric films studied were PP (polypropylene), PE/nylon/EVOH/PE (polyethylene/nylon/ethylene vinyl alcohol/polyethylene) and metPET/VA EVA/LLDPE (metallized polyethylene terephthalate/ethylenevinyl acetate/linear low density polyethylene). Our assessment showed that both LE and DTS–TD techniques are valuable procedures. LE was evaluated as an alternative method with the advantage of being a simplified process. It was possible to measure the amount of D ‐limonene in the polymers using both methods. Correlation between methods was >82% and for the single layer polymers >92%. The respective sorption values obtained by the two methods were also found to be in good agreement. LE is simple and rapid to perform and, in general, gives slightly lower results compared to DTS–TS sorption tests conducted with adequate food simulants. The results indicate that the liquid extraction method is an excellent technique for the determination of sorbate concentration in polymeric structures. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
13.
14.
15.
A Dual‐Function Na2SO4 Template Directed Formation of Cathode Materials with a High Content of Sulfur Nanodots for Lithium–Sulfur Batteries 下载免费PDF全文
Chong Luo Wei Lv Yaqian Deng Guangmin Zhou Zheng‐Ze Pan Shuzhang Niu Baohua Li Feiyu Kang Quan‐Hong Yang 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(27)
The sulfur content in carbon–sulfur hybrid using the melt‐diffusion method is normally lower than 70 wt%, which greatly decreases the energy density of the cathode in lithium–sulfur (Li‐S) batteries. Here, a scalable method inspired by the commercialized production of Na2S is used to prepare a hierarchical porous carbon–sulfur hybrid (denoted HPC‐S) with high sulfur content (≈85 wt%). The HPC‐S is characterized by the structure of sulfur nanodots naturally embedded in a 3D carbon network. The strategy uses Na2SO4 as the starting material, which serves not only as the sulfur precursor but also as a salt template for the formation of the 3D carbon network. The HPC‐S cathode with such a high sulfur content shows excellent rate performance and cycling stability in Li–S batteries because of the sulfur nanoparticles, the unique carbon framework, and the strong interaction between them. The production method can also be readily scaled up and used in practical Li–S battery applications. 相似文献
16.
Direct Observations of the Formation and Redox‐Mediator‐Assisted Decomposition of Li2O2 in a Liquid‐Cell Li–O2 Microbattery by Scanning Transmission Electron Microscopy 下载免费PDF全文
Chuchu Yang Jiuhui Han Pan Liu Chen Hou Gang Huang Takeshi Fujita Akihiko Hirata Mingwei Chen 《Advanced materials (Deerfield Beach, Fla.)》2017,29(41)
Operando scanning transmission electron microscopy observations of cathodic reactions in a liquid‐cell Li–O2 microbattery in the presence of the redox mediator tetrathiafulvalene (TTF) in 1.0 m LiClO4 dissolved dimethyl sulfoxide electrolyte are reported. It is found that the TTF addition does not obviously affect the discharge reaction for the formation of a solid Li2O2 phase. The coarsening of Li2O2 nanoparticles occurs via both conventional Ostwald ripening and nonclassical crystallization by particle attachment. During charging, the oxidation reaction at significantly reduced charge potentials mainly takes place at Li2O2/electrolyte interfaces and has obvious correspondence with the oxidized TTF+ distributions in the electric fields of the charged electrode. This study provides direct evidence that TTF truly plays a role in promoting the decomposition of Li2O2 as a soluble charge‐transfer agent between the electrode and the Li2O2. 相似文献
17.
18.
Christiane Hppener Felix H. Schacher Volker Deckert 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(17)
Understanding the property‐function relation of nanoparticles in various application fields involves determining their physicochemical properties, which is still a remaining challenge to date. While a multitude of different characterization tools can be applied, these methods by themselves can only provide an incomplete picture. Therefore, novel analytical techniques are required, which can address both chemical functionality and provide structural information at the same time with high spatial resolution. This is possible by using tip‐enhanced Raman spectroscopy (TERS), but due to its limited depth information, TERS is usually restricted to investigations of the nanoparticle surface. Here, TERS experiments are established on polystyrene nanoparticles (PS NPs) after resin embedding and microtome slicing. With that, unique access to their internal morphological features is gained, and thus, enables differentiation between information obtained for core‐ and shell‐regions. Complementary information is obtained by means of transmission electron microscopy (TEM) and from force–distance curve based atomic force microscopy (FD‐AFM). This multimodal approach achieves a high degree of discrimination between the resin and the polymers used for nanoparticle formulation. The high potential of TERS combined with advanced AFM spectroscopy tools to probe the mechanical properties is applied for quality control of the resin embedding procedure. 相似文献
19.
Energy Storage: A Dual‐Function Na2SO4 Template Directed Formation of Cathode Materials with a High Content of Sulfur Nanodots for Lithium–Sulfur Batteries (Small 27/2017) 下载免费PDF全文
Chong Luo Wei Lv Yaqian Deng Guangmin Zhou Zheng‐Ze Pan Shuzhang Niu Baohua Li Feiyu Kang Quan‐Hong Yang 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(27)