首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The large‐scale implementation of lithium metal batteries (LMBs) has long been plagued by the uncontrollable Li deposition triggered safety issues. Herein, a lithiophilic three‐dimensional Li anode scaffold, which is prepared by molten Li infusion aided by confined growth of low‐cost Zn clusters, is rationally constructed for high‐performance LMBs. Owing to the synergy of the carbon host and the effective regulation from the Zn nanoclusters, the large volumetric change of Li metal is well mitigated and shows a smooth and dendrite‐free behavior. The Li anode scaffold can deliver much improved Coulombic efficiency, superior rate performance, and long cycle lifespan with much lower voltage polarization. Furthermore, the half cells of Li anode scaffold paired with LiFePO4/LiCoO2/sulfur can achieve a higher specific capacity and longer stable cycling life than those with conventional Li foil. The Li|LFP cells can achieve a stable cycling over 250 cycles at 1C with a higher capacity retention of ≈90.8%, and a higher initial discharge capacity of 924.6 mAh g?1 with a high capacity retention over 300 cycles can also be obtained in Li|S cells at 1C. This work demonstrates a cost‐effective and scalable strategy for stable Li metal anode toward next‐generation and high‐performance LMBs.  相似文献   

2.
The use of high‐energy‐density Li metal anodes in rechargeable batteries is not possible because of dendrite formation that can potentially result in a battery fire. Although so‐called dendrite‐free Li metal anodes have been reported in many recent publications, Li dendrite growth is still kinetically favorable and it remains a severe safety concern in mass production. Here, a detection system capable of alerting for Li dendrite formation in a two‐electrode battery with no additional electrodes required is reported. When dendrites contact a red phosphorous‐coated separator, dendrite growth is revealed by a significant voltage change. This can activate a signal through the battery management system, warning of the presence of Li dendrites and leading to shutdown of the battery before the dendrites become dangerous.  相似文献   

3.
The application and development of lithium metal battery are severely restricted by the uncontrolled growth of lithium dendrite and poor cycle stability. Uniform lithium deposition is the core to solve these problems, but it is difficult to be achieved on commercial Cu collectors. In this work, a simple and commercially viable strategy is utilized for large‐scale preparation of a modified planar Cu collector with lithiophilic Ag nanoparticles by a simple substitution reaction. As a result, the Li metal shows a cobblestone‐like morphology with similar size and uniform distribution rather than Li dendrites. Interestingly, a high‐quality solid electrolyte interphase layer in egg shell‐like morphology with fast ion diffusion channels is formed on the interface of the collector, exhibiting good stability with long‐term cycles. Moreover, at the current density of 1 mA cm?2 for 1 mAh cm?2, the Ag modified planar Cu collector shows an ultralow nucleation overpotential (close to 0 mV) and a stable coulombic efficiency of 98.54% for more than 600 cycles as well as long lifespan beyond 900 h in a Li|Cu‐Ag@Li cell, indicating the ability of this method to realize stable Li metal batteries. Finally, full cells paired with LiNi0.8Co0.1Mn0.1O2 show superior rate performance and stability compared with those paired with Li foil.  相似文献   

4.
Bendable energy‐storage systems with high energy density are demanded for conformal electronics. Lithium‐metal batteries including lithium–sulfur and lithium–oxygen cells have much higher theoretical energy density than lithium‐ion batteries. Reckoned as the ideal anode, however, Li has many challenges when directly used, especially its tendency to form dendrite. Under bending conditions, the Li‐dendrite growth can be further aggravated due to bending‐induced local plastic deformation and Li‐filaments pulverization. Here, the Li‐metal anodes are made bending tolerant by integrating Li into bendable scaffolds such as reduced graphene oxide (r‐GO) films. In the composites, the bending stress is largely dissipated by the scaffolds. The scaffolds have increased available surface for homogeneous Li plating and minimize volume fluctuation of Li electrodes during cycling. Significantly improved cycling performance under bending conditions is achieved. With the bending‐tolerant r‐GO/Li‐metal anode, bendable lithium–sulfur and lithium–oxygen batteries with long cycling stability are realized. A bendable integrated solar cell–battery system charged by light with stable output and a series connected bendable battery pack with higher voltage is also demonstrated. It is anticipated that this bending‐tolerant anode can be combined with further electrolytes and cathodes to develop new bendable energy systems.  相似文献   

5.
The high reactivity of Li metal and the inhomogeneous Li deposition leads to the formation of Li dendrites and “dead” Li, which impedes the performance of Li metal batteries (LMBs) with high energy density. The regulating and guiding the Li dendrite nucleation is a desirable tactic to realize concentrated distribution of Li dendrites instead of completely inhibiting dendrite formation. Here, a Fe-Co-based Prussian blue analog with hollow and open framework (H-PBA) is employed to modify the commercial polypropylene separator (PP@H-PBA). This functional PP@H-PBA can guide the lithium dendrite growth to form uniform lithium deposition and activate the inactive Li. In details, the H-PBA with macroporous structure and open framework can induce the growth of lithium dendrites via space confinement, while the positive Fe/Co-sites lowered by polar cyanide (−CN) of PBA can reactivate the inactive Li. Thus, the Li|PP@H-PBA|Li symmetric cells exhibit long-term stability at 1 mA cm−2 for 1 mAh cm−2 over 500 h. And the Li-S batteries with PP@H-PBA deliver favorable cycling performance at 500 mA g−1 for 200 cycles.  相似文献   

6.
梁杰铬  罗政  闫钰  袁斌 《材料导报》2018,32(11):1779-1786
在全球能源与环境问题日趋紧迫的大背景下,可再生能源的获取与利用途径及高效安全的储能技术的研发一直是工业界和科学界关注的热点之一。锂离子二次电池作为能量存储器件,拥有高比能量、长循环寿命等优点,近十几年来其研究取得了长足进展,并在各类便携式电子设备和电动交通工具中获得了广泛应用。然而,随着各种高性能设备的不断涌现,商业化的锂离子电池越来越难以满足其在能量密度、循环稳定性和安全性等方面的要求。为了进一步提高锂离子电池的能量密度,需要开发出高比容量的负极材料(硅、锡和锂等)以取代传统石墨负极。硅、锡等新式负极材料通过与锂离子反应形成含锂化合物的原理来存储与释放锂离子,完成电池的一个充放电过程。这个过程往往伴随着负极材料体积的剧烈变化,经历较长时间循环使用后会导致负极材料的粉化甚至从集流体上剥离,引起电池容量迅速衰减甚至失效。而锂负极通过锂在负极上的溶解和沉积来完成电池的充放电过程,该过程不存在反应相变所导致的体积变化。另外,锂金属负极材料具有极高的质量比容量(3 860mAh/g)、低密度(0.59g/cm3)和低的还原电位(-3.04V,相比于氢标准电极),被认为是一种理想的可充电电池负极材料。然而,锂的枝晶生长、锂金属电池低的库伦效率和锂的无主体沉积引起的体积膨胀等一些关键问题长期以来制约着锂负极的商业应用。锂的每次沉积都会产生枝晶,在充放电循环中,锂枝晶会导致电池内部短路甚至发生爆炸,带来严重的安全问题。除此之外,锂枝晶还会增加负极表面积,新暴露的锂金属会与电解液反应生成固态电解质膜(Solid electrolyte interface,SEI),这会损耗活性材料以及降低电池的库伦效率。为了解决以上问题,研究者们对锂金属电极进行了许多探索,尤其是在锂枝晶生长的机理及其抑制方法方面。一些理论模型如扩散模型、SEI保护模型、电荷诱导生长模型和薄膜生长模型等,以及与这些模型相对应的一些抑制方法如均匀锂离子流法、SEI膜保护法、稳定沉积主体法和静电屏蔽保护法等被提出。这些抑制方法能够在一定程度上缓解锂枝晶的生长问题,但都未能达到商业化应用的要求。本文总结了近几年研究人员针对锂离子电池锂金属负极的一些重要研究,系统地介绍了业内较为认同的枝晶生长模型和影响因素,并着重叙述了抑制枝晶生长的方法及成效,最后就锂金属负极将来的研究方向给出一些建议。  相似文献   

7.
Much attention is paid to metal lithium as a hopeful negative material for reversible batteries with a high specific capacity. Although applying 3D hosts can relieve the dendrite growth to some extent, gradient‐distributed lithium ion in 3D uniform hosts still induces uncontrolled lithium dendrites growth, especially at high lithium capacity and high current density. Herein, a 3D conductive carbon nanofiber framework with gradient‐distributed ZnO particles as nucleation seeds (G‐CNF) to regulate lithium deposition is proposed. Based on such a unique structure, the G‐CNF electrode exhibits a high average Coulombic efficiency (CE) of 98.1% for 700 cycles at 0.5 mA cm?2. Even at 5 mA cm?2, the G‐CNF electrode performs a stable cycling process and high CE of 96.0% for over 200 cycles. When the lithium‐deposited G‐CNF (G‐CNF‐Li) anode is applied in a full cell with a commercial LiFePO4 cathode, it exhibits a stable capacity of 115 mAh g?1 and high retention of 95.7% after 300 cycles. Through inducing the gradient‐distributed nucleation seeds to counter the existing Li‐ion concentration polarization, a uniform and stable lithium deposition process in the 3D host is achieved even under the condition of high current density.  相似文献   

8.
The pursuit for high‐energy‐density batteries has inspired the resurgence of metallic lithium (Li) as a promising anode, yet its practical viability is restricted by the uncontrollable Li dendrite growth and huge volume changes during repeated cycling. Herein, a new 3D framework configured with Mo2N‐mofidied carbon nanofiber (CNF) architecture is established as a Li host via a facile fabrication method. The lithiophilic Mo2N acts as a homogeneously pre‐planted seed with ultralow Li nucleation overpotential, thus spatially guiding a uniform Li nucleation and deposition in the matrix. The conductive CNF skeleton effectively homogenizes the current distribution and Li‐ion flux, further suppressing Li‐dendrite formation. As a result, the 3D hybrid Mo2N@CNF structure facilitates a dendrite‐free morphology with greatly alleviated volume expansion, delivering a significantly improved Coulombic efficiency of ≈99.2% over 150 cycles at 4 mA cm?2. Symmetric cells with Mo2N@CNF substrates stably operate over 1500 h at 6 mA cm?2 for 6 mA h cm?2. Furthermore, full cells paired with LiNi0.8Co0.1Mn0.1O2 (NMC811) cathodes in conventional carbonate electrolytes achieve a remarkable capacity retention of 90% over 150 cycles. This work sheds new light on the facile design of 3D lithiophilic hosts for dendrite‐free lithium‐metal anodes.  相似文献   

9.
Metallic lithium (Li) is a promising anode material for next‐generation rechargeable batteries. However, the dendrite growth of Li and repeated formation of solid electrolyte interface during Li plating and stripping result in low Coulombic efficiency, internal short circuits, and capacity decay, hampering its practical application. In the development of stable Li metal anode, the current collector is recognized as a critical component to regulate Li plating. In this work, a lithiophilic Cu‐CuO‐Ni hybrid structure is synthesized as a current collector for Li metal anodes. The low overpotential of CuO for Li nucleation and the uniform Li+ ion flux induced by the formation of Cu nanowire arrays enable effective suppression of the growth of Li dendrites. Moreover, the surface Cu layer can act as a protective layer to enhance structural durability of the hybrid structure in long‐term running. As a result, the Cu‐CuO‐Ni hybrid structure achieves a Coulombic efficiency above 95% for more than 250 cycles at a current density of 1 mA cm?2 and 580 h (290 cycles) stable repeated Li plating and stripping in a symmetric cell.  相似文献   

10.
A novel single‐ion conducting polymer electrolyte (SIPE) membrane with high lithium‐ion transference number, good mechanical strength, and excellent ionic conductivity is designed and synthesized by facile coupling of lithium bis(allylmalonato) borate (LiBAMB), pentaerythritol tetrakis (2‐mercaptoacetate) (PETMP) and 3,6‐dioxa‐1,8‐octanedithiol (DODT) in an electrospun poly(vinylidienefluoride) (PVDF) supporting membrane via a one‐step photoinitiated in situ thiol–ene click reaction. The structure‐optimized LiBAMB‐PETMP‐DODT (LPD)@PVDF SIPE shows an outstanding ionic conductivity of 1.32 × 10?3 S cm?1 at 25 °C, together with a high lithium‐ion transference number of 0.92 and wide electrochemical window up to 6.0 V. The SIPE exhibits high tensile strength of 7.2 MPa and elongation at break of 269%. Due to these superior performances, the SIPE can suppress lithium dendrite growth, which is confirmed by galvanostatic Li plating/stripping cycling test and analysis of morphology of Li metal electrode surface after cycling test. Li|LPD@PVDF|Li symmetric cell maintains an extremely stable and low overpotential without short circuiting over the 1050 h cycle. The Li|LPD@PVDF|LiFePO4 cell shows excellent rate capacity and outstanding cycle performance compared to cells based on a conventional liquid electrolyte (LE) with Celgard separator. The facile approach of the SIPE provides an effective and promising electrolyte for safe, long‐life, and high‐rate lithium metal batteries.  相似文献   

11.
Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (?3.04 V) and high specific capacity (3860 mAh g?1). However, the safety issues impede the commercialization of Li anode batteries. In this work, research of hierarchical structure designs for Li anodes to suppress Li dendrite growth and alleviate volume expansion from the interior (by the 3D current collector and host matrix) to the exterior (by the artificial solid electrolyte interphase (SEI), protective layer, separator, and solid state electrolyte) is concluded. The basic principles for achieving Li dendrite and volume expansion free Li anode are summarized. Following these principles, 3D porous current collector and host matrix are designed to suppress the Li dendrite growth from the interior. Second, artificial SEI, the protective layer, and separator as well as solid‐state electrolyte are constructed to regulate the distribution of current and control the Li nucleation and deposition homogeneously for suppressing the Li dendrite growth from exterior of Li anode. Ultimately, this work puts forward that it is significant to combine the Li dendrite suppression strategies from the interior to exterior by 3D hierarchical structure designs and Li metal modification to achieve excellent cycling and safety performance of Li metal batteries.  相似文献   

12.
Li‐metal batteries (LiMBs) are experiencing a renaissance; however, achieving scalable production of dendrite‐free Li anodes for practical application is still a formidable challenge. Herein, a facile and universal method is developed to directly reduce graphene oxide (GO) using alkali metals (e.g., Li, Na, and K) in moderate conditions. Based on this innovation, a spontaneously reduced graphene coating can be designed and modulated on a Li surface (SR‐G‐Li). The symmetrical SR‐G‐Li|SR‐G‐Li cell can run up to 1000 cycles at a high practical current density of 5 mA cm?2 without a short circuit, demonstrating one of the longest lifespans reported with LiPF6‐based carbonate electrolytes. More significantly, a practically scalable paradigm is established to fabricate dendrite‐free Li anodes by spraying a GO layer on the Li anode surface for large‐scale production of LiFePO4/Li pouch cells, reflected by the continuous manufacturing of the SR‐G‐Li anodes based on the roll‐to‐roll technology. The strategy provides new commercial opportunities to both LiMBs and graphene.  相似文献   

13.
Metallic lithium is the most competitive anode material for next-generation lithium (Li)-ion batteries. However, one of its major issues is Li dendrite growth and detachment, which not only causes safety issues, but also continuously consumes electrolyte and Li, leading to low coulombic efficiency (CE) and short cycle life for Li metal batteries. Herein, the Li dendrite growth of metallic lithium anode is suppressed by forming a lithium fluoride (LiF)-enriched solid electrolyte interphase (SEI) through the lithiation of surface-fluorinated mesocarbon microbeads (MCMB-F) anodes. The robust LiF-enriched SEI with high interfacial energy to Li metal effectively promotes planar growth of Li metal on the Li surface and meanwhile prevents its vertical penetration into the LiF-enriched SEI from forming Li dendrites. At a discharge capacity of 1.2 mAh cm−2, a high CE of >99.2% for Li plating/stripping in FEC-based electrolyte is achieved within 25 cycles. Coupling the pre-lithiated MCMB-F (Li@MCMB-F) anode with a commercial LiFePO4 cathode at the positive/negative (P/N) capacity ratio of 1:1, the LiFePO4//Li@MCMB-F cells can be charged/discharged at a high areal capacity of 2.4 mAh cm−2 for 110 times at a negligible capacity decay of 0.01% per cycle.  相似文献   

14.
锂金属具有高理论比容量和低电化学电位,是发展高能量密度电池最有吸引力的负极材料之一。然而,锂金属负极在反复的沉积/剥离过程中,不可避免地会出现不规则的锂枝晶生长,这将严重影响锂金属电池的循环寿命和使用安全性。本研究发展了一种简单温和的策略,在碳纳米管上原位修饰铋纳米颗粒,并涂覆在商业铜箔表面用作锂金属负极的集流体。研究表明,原位修饰的铋纳米颗粒可显著促进锂均匀沉积,抑制锂枝晶生长,从而提高锂金属电池的电化学性能。在电流密度为1 mA·cm–2的条件下,基于Bi@CNT/Cu集流体的锂铜电池循环300圈后库仑效率可稳定在98%。基于Li@Bi@CNT/Cu负极的对称电池可稳定循环1000 h。基于Bi@CNT/Cu集流体的磷酸铁锂(LFP)全电池也获得了优异的电化学性能,在1C(170m A·g–1)倍率下可稳定循环700圈。本研究为抑制锂金属负极枝晶生长提供了新的思路。  相似文献   

15.
The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single‐ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long‐term working conditions. Herein, a robust dual‐phase artificial interface is constructed, where not only the single‐ion‐conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al‐doped Li6.75La3Zr1.75Ta0.25O12‐based bottom layer and a lithiated Nafion top layer. The as‐constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li‐ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite‐free Li deposition behavior in a working battery.  相似文献   

16.
Notorious lithium dendrite causes severe capacity fade and harsh safety issues of lithium metal batteries, which hinder the practical applications of lithium metal electrodes in higher energy rechargeable batteries. Here, a kind of 3D‐cross‐linked composite network is successfully employed as a flexible‐rigid coupling protective layer on a lithium metal electrode. During the plating/stripping process, the composite protective layer would enable uniform distribution of lithium ions in the adjacent regions of the lithium electrode, resulting in a dendrite‐free deposition at a current density of 2 mA cm?2. The LiNi0.5Mn1.5O4‐based lithium metal battery presents an excellent cycling stability at a voltage range of 3.5–5.0 V with the induction of 3D‐cross‐linked composite protective layer. From an industrial field application of view, thin lithium metal electrodes (40 µm, with 4 times excess lithium) can be used in LiNi0.5Mn1.5O4 (with industrially significant loading of 18 mg cm?2 and 2.6 mAh cm?2)‐based lithium metal batteries, which reveals a promising opportunity for practical applicability in high energy lithium metal batteries.  相似文献   

17.
Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO2Li and ROLi) on the top and abundant inorganic components (Li2CO3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.  相似文献   

18.
In this work, combining both advantages of potassium‐ion batteries and dual‐ion batteries, a novel potassium‐ion‐based dual‐ion battery (named as K‐DIB) system is developed based on a potassium‐ion electrolyte, using metal foil (Sn, Pb, K, or Na) as anode and expanded graphite as cathode. When using Sn foil as the anode, the K‐DIB presents a high reversible capacity of 66 mAh g?1 at a current density of 50 mA g?1 over the voltage window of 3.0–5.0 V, and exhibits excellent long‐term cycling performance with 93% capacity retention for 300 cycles. Moreover, as the Sn foil simultaneously acts as the anode material and the current collector, dead load and dead volume of the battery can be greatly reduced, thus the energy density of the K‐DIB is further improved. It delivers a high energy density of 155 Wh kg?1 at a power density of 116 W kg?1, which is comparable with commercial lithium‐ion batteries. Thus, with the advantages of environmentally friendly, cost effective, and high energy density, this K‐DIB shows attractive potential for future energy storage application.  相似文献   

19.
Lithium metal has attracted much research interest as a possible anode material for high‐energy‐density lithium‐ion batteries in recent years. However, its practical use is severely limited by uncontrollable deposition, volume expansion, and dendrite formation. Here, a metastable state of Li, Li cluster, that forms between LiC6 and Li dendrites when over‐lithiating carbon cloth (CC) is discovered. The Li clusters with sizes in the micrometer and submicrometer scale own outstanding electrochemical reversibility between Li+ and Li, allowing the CC/Li clusters composite anode to demonstrate a high first‐cycle coulombic efficiency (CE) of 94.5% ± 1.0% and a stable CE of 99.9% for 160 cycles, which is exceptional for a carbon/lithium composite anode. The CC/Li clusters composite anode shows a high capacity of 3 mAh cm?2 contributed by both Li+ intercalation and Li‐cluster formation, and excellent cycling stability with a signature sloping voltage profile. Furthermore, the CC/Li clusters composite anode can be assembled into full cells without precycling or prelithiation. The full cells containing bare CC as the anode and excessive LiCoO2 as the cathode exhibit high specific capacity and good cyclic stability in 200 cycles, stressing the advantage of controlled formation of Li clusters.  相似文献   

20.
Rechargeable lithium‐metal batteries (LMBs) are regarded as the “holy grail” of energy‐storage systems, but the electrolytes that are highly stable with both a lithium‐metal anode and high‐voltage cathodes still remain a great challenge. Here a novel “localized high‐concentration electrolyte” (HCE; 1.2 m lithium bis(fluorosulfonyl)imide in a mixture of dimethyl carbonate/bis(2,2,2‐trifluoroethyl) ether (1:2 by mol)) is reported that enables dendrite‐free cycling of lithium‐metal anodes with high Coulombic efficiency (99.5%) and excellent capacity retention (>80% after 700 cycles) of Li||LiNi1/3Mn1/3Co1/3O2 batteries. Unlike the HCEs reported before, the electrolyte reported in this work exhibits low concentration, low cost, low viscosity, improved conductivity, and good wettability that make LMBs closer to practical applications. The fundamental concept of “localized HCEs” developed in this work can also be applied to other battery systems, sensors, supercapacitors, and other electrochemical systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号