首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Photoacoustic (PA) imaging in the second near‐infrared (NIR‐II) window (1000–1700 nm) holds great promise for deep‐tissue diagnosis due to the reduced light scattering and minimized tissue absorption; however, exploration of such a noninvasive imaging technique is greatly constrained by the lack of biodegradable NIR‐II absorbing agents. Herein, the first series of metabolizable NIR‐II PA agents are reported based on semiconducting polymer nanoparticles (SPNs). Such completely organic nanoagents consist of π‐conjugated yet oxidizable optical polymer as PA generator and hydrolyzable amphiphilic polymer as particle matrix to provide water solubility. The obtained SPNs are readily degraded by myeloperoxidase and lipase abundant in phagocytes, transforming from nonfluorescent nanoparticles (30 nm) into NIR fluorescent ultrasmall metabolites (≈1 nm). As such, these nanoagents can be effectively cleared out via both hepatobiliary and renal excretions after systematic administration, leaving no toxicity to living mice. Particularly these nanoagents possess high photothermal conversion efficiencies and emit bright PA signals at 1064 nm, enabling sensitive NIR‐II PA imaging of both subcutaneous tumor and deep brain vasculature through intact skull in living animals at a low systematic dosage. This study thus provides a generalized molecular design toward organic metabolizable semiconducting materials for biophotonic applications in NIR‐II window.  相似文献   

3.
4.
Optogenetics is an emerging powerful tool to investigate workings of the nervous system. However, the use of low tissue penetrating visible light limits its therapeutic potential. Employing deep penetrating near‐infrared (NIR) light for optogenetics would be beneficial but it cannot be used directly. This issue can be tackled with upconversion nanoparticles (UCNs) acting as nanotransducers emitting at shorter wavelengths extending to the UV range upon NIR light excitation. Although attractive, implementation of such NIR‐optogenetics is hindered by the low UCN emission intensity that necessitates high NIR excitation intensities, resulting in overheating issues. A novel quasi‐continuous wave (quasi‐CW) excitation approach is developed that significantly enhances multiphoton emissions from UCNs, and for the first time NIR light‐triggered optogenetic manipulations are implemented in vitro and in C. elegans. The approach developed here enables the activation of channelrhodopsin‐2 with a significantly lower excitation power and UCN concentration along with negligible phototoxicity as seen with CW excitation, paving the way for therapeutic optogenetics.  相似文献   

5.
6.
7.
Thienoisoindigo‐based semiconducting polymer with a strong near‐infrared absorbance is synthesized and its water‐dispersed nanoparticles (TSPNs) are investigated as a contrast agent for photoacoustic (PA) imaging in the second near‐infrared (NIR‐II) window (1000–1350 nm). The TSPNs generate a strong PA signal in the NIR‐II optical window, where background signals from endogenous contrast agents, including blood and lipid, are at the local minima. By embedding a TSPN‐containing tube in chicken‐breast tissue, an imaging depth of more than 5 cm at 1064 nm excitation is achieved with a contrast‐agent concentration as low as 40 µg mL?1. The TSPNs under the skin or in the tumor are clearly visualized at 1100 and 1300 nm, with negligible interference from the tissue background. TSPN as a PA contrast in the NIR‐II window opens new opportunities for biomedical imaging of deep tissues with improved contrast.  相似文献   

8.
9.
Enzyme activity is important for metabolism, cell functions, and treating diseases. However, remote control of enzyme activity in deep tissue remains a challenge. This study demonstrates near‐infrared (NIR) light‐regulated enzyme activity in living cells based on upconverting nanoparticles (UCNPs) and a photoactivatable Ru complex. The Ru complex is a caged enzyme inhibitor that can be activated by blue light. To prepare a nanocarrier for NIR photoinhibition of enzyme activity, a UCNP and the caged enzyme inhibitors are encapsulated in a hollow mesoporous silica nanoparticle. In such a nanocarrier, the UCNP can harvest NIR light and convert it into blue light, which can activate the caged enzyme inhibitors. This photoactivation process is feasible in deep tissue because of the tissue penetration ability of NIR light. The nanocarrier is compatible to LNCaP, PC3, and SAOS‐2 cells, which show high enzyme expression. NIR irradiation induces release of the inhibitors and inhibition of enzyme activity in living cells. NIR light provides high spatiotemporal resolution to regulate enzyme activity in deep tissue.  相似文献   

10.
11.
12.
Carbon dots (CDs) have significant potential for use in various fields including biomedicine, bioimaging, and optoelectronics. However, inefficient excitation and emission of CDs in both near‐infrared (NIR‐I and NIR‐II) windows remains an issue. Solving this problem would yield significant improvement in the tissue‐penetration depth for in vivo bioimaging with CDs. Here, an NIR absorption band and enhanced NIR fluorescence are both realized through the surface engineering of CDs, exploiting electron‐acceptor groups, namely molecules or polymers rich in sulfoxide/carbonyl groups. These groups, which are bound to the outer layers and the edges of the CDs, influence the optical bandgap and promote electron transitions under NIR excitation. NIR‐imaging information encryption and in vivo NIR fluorescence imaging of the stomach of a living mouse using CDs modified with poly(vinylpyrrolidone) in aqueous solution are demonstrated. In addition, excitation by a 1400 nm femtosecond laser yields simultaneous two‐photon‐induced NIR emission and three‐photon‐induced red emission of CDs in dimethyl sulfoxide. This study represents the realization of both NIR‐I excitation and emission as well as two‐photon‐ and three‐photon‐induced fluorescence of CDs excited in an NIR‐II window, and provides a rational design approach for construction and clinical applications of CD‐based NIR imaging agents.  相似文献   

13.
14.
Luminescent silicon nanocrystals (ncSi) are showing great promise as photoluminescent tags for biological fluorescence imaging, with size‐dependent emission that can be tuned into the near‐infrared biological window and reported lack of toxicity. Here, colloidally stable ncSi with NIR photoluminescence are synthesized from (HSiO1.5)n sol–gel glasses and are used in biological fluorescence imaging. Modifications to the thermal processing conditions of (HSiO1.5)n sol–gel glasses, the development of new ncSi oxide liberation chemistry, and an appropriate alkyl surface passivation scheme lead to the formation of colloidally stable ncSi with photoluminescence centered at 955 nm. Water solubility and biocompatibility are achieved through encapsulation of the hydrophobic alkyl‐capped ncSi within PEG‐terminated solid lipid nanoparticles. Their applicability to biological imaging is demonstrated with the in‐vitro fluorescence labelling of human breast tumor cells.  相似文献   

15.
Utilization of visible and near‐infrared light has always been the pursuit of photocatalysis research. In this article, an approach is developed to integrate dual plasmonic nanostructures with TiO2 semiconductor nanosheets for photocatalytic hydrogen production in visible and near‐infrared spectral regions. Specifically, the Au nanocubes and nanocages used in this work can harvest visible and near‐infrared light, respectively, and generate and inject hot electrons into TiO2. Meanwhile, Pd nanocubes that can trap the energetic electrons from TiO2 and efficiently participate in the hydrogen evolution reaction are employed as co‐catalysts for improved catalytic activity. Enabled by this unique integration design, the hydrogen production rate achieved is dramatically higher than those of its counterpart structures. This work represents a step toward the rational design of semiconductor–metal hybrid structures for broad‐spectrum photocatalysis.  相似文献   

16.
Photodynamic therapy (PDT) is an important cancer treatment modality due to its minimally invasive nature. However, the efficiency of existing PDT drug molecules in the deep‐tissue‐penetrable near‐infrared (NIR) region has been the major hurdle that has hindered further development and clinical usage of PDT. Thus, herein a strategy is presented to utilize a resonance energy transfer (RET) mechanism to construct a novel dyad photosensitizer which is able to dramatically boost NIR photon utility and enhance singlet oxygen generation. In this work, the energy donor moiety (distyryl‐BODIPY) is connected to a photosensitizer (i.e., diiodo‐distyryl‐BODIPY) to form a dyad molecule ( RET‐BDP ). The resulting RET‐BDP shows significantly enhanced absorption and singlet oxygen efficiency relative to that of the acceptor moiety of the photosensitizer alone in the NIR range. After being encapsulated with biodegradable copolymer pluronic F‐127‐folic acid (F‐127‐FA), RET‐BDP molecules can form uniform and small organic nanoparticles that are water soluble and tumor targetable. Used in conjunction with an exceptionally low‐power NIR LED light irradiation (10 mW cm?2), these nanoparticles show superior tumor‐targeted therapeutic PDT effects against cancer cells both in vitro and in vivo relative to unmodified photosensitizers. This study offers a new method to expand the options for designing NIR‐absorbing photosensitizers for future clinical cancer treatments.  相似文献   

17.
18.
Near‐infrared (NIR) light‐emitting diodes (LEDs), with emission wavelengths between 800 and 950 nm, are useful for various applications, e.g., night‐vision devices, optical communication, and medical treatments. Yet, devices using thin film materials like organic semiconductors and lead based colloidal quantum dots face certain fundamental challenges that limit the improvement of external quantum efficiency (EQE), making the search of alternative NIR emitters important for the community. In this work, efficient NIR LEDs with tunable emission from 850 to 950 nm, using lead–tin (Pb‐Sn) halide perovskite as emitters are demonstrated. The best performing device exhibits an EQE of 5.0% with a peak emission wavelength of 917 nm, a turn‐on voltage of 1.65 V, and a radiance of 2.7 W Sr?1 m?2 when driven at 4.5 V. The emission spectra of mixed Pb‐Sn perovskites are tuned either by changing the Pb:Sn ratio or by incorporating bromide, and notably exhibit no phase separation during device operation. The work demonstrates that mixed Pb‐Sn perovskites are promising next generation NIR emitters.  相似文献   

19.
20.
Near‐infrared (NIR) light is widely used for noninvasive optical diagnosis and phototherapy. However, current research focuses on the first NIR window (NIR‐I, 650–950 nm), while the second NIR window (NIR‐II, 1000–1700 nm) is far less exploited. The development of the first organic photothermal nanoagent (SPNI‐II) with dual‐peak absorption in both NIR windows and its utilization in photothermal therapy (PTT) are reported herein. Such a nanoagent comprises a semiconducting copolymer with two distinct segments that respectively and identically absorb NIR light at 808 and 1064 nm. With the photothermal conversion efficiency of 43.4% at 1064 nm generally higher than other inorganic nanomaterials, SPNI‐II enables superior deep‐tissue heating at 1064 nm over that at 808 nm at their respective safety limits. Model deep‐tissue cancer PTT at a tissue depth of 5 mm validates the enhanced antitumor effect of SPNI‐II when shifting laser irradiation from the NIR‐I to the NIR‐II window. The good biodistribution and facile synthesis of SPNI‐II also allow it to be doped with an NIR dye for fluorescence‐imaging‐guided NIR‐II PTT through systemic administration. Thus, this study paves the way for the development of new polymeric nanomaterials to advance phototherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号