首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite the exciting progress on power conversion efficiencies, the commercialization of the emerging lead (Pb) halide perovskite solar cell technology still faces significant challenges, one of which is the inclusion of toxic Pb. Searching for Pb‐free perovskite solar cell absorbers is currently an attractive research direction. The approaches used for and the consequences of Pb replacement are reviewed herein. Reviews on the theoretical understanding of the electronic, optical, and defect properties of Pb and Pb‐free halide perovskites and perovskite derivatives are provided, as well as the experimental results available in the literature. The theoretical understanding explains well why Pb halide perovskites exhibit superior photovoltaic properties, but Pb‐free perovskites and perovskite derivatives do not.  相似文献   

2.
Halide perovskites have high light absorption coefficients, long charge carrier diffusion lengths, intense photoluminescence, and slow rates of non‐radiative charge recombination. Thus, they are attractive photoactive materials for developing high‐performance optoelectronic devices. These devices are also cheap and easy to be fabricated. To realize the optimal performances of halide perovskite‐based optoelectronic devices (HPODs), perovskite photoactive layers should work effectively with other functional materials such as electrodes, interfacial layers and encapsulating films. Conventional two‐dimensional (2D) materials are promising candidates for this purpose because of their unique structures and/or interesting optoelectronic properties. Here, we comprehensively summarize the recent advancements in the applications of conventional 2D materials for halide perovskite‐based photodetectors, solar cells and light‐emitting diodes. The examples of these 2D materials are graphene and its derivatives, mono‐ and few‐layer transition metal dichalcogenides (TMDs), graphdiyne and metal nanosheets, etc. The research related to 2D nanostructured perovskites and 2D Ruddlesden–Popper perovskites as efficient and stable photoactive layers is also outlined. The syntheses, functions and working mechanisms of relevant 2D materials are introduced, and the challenges to achieving practical applications of HPODs using 2D materials are also discussed.  相似文献   

3.
4.
5.
Long‐term instability and possible lead contamination are the two main issues limiting the widespread application of organic–inorganic lead halide perovskites. Here a facile and efficient solution‐phase method is demonstrated to synthesize lead‐free Cs2SnX6 (X = Br, I) with a well‐defined crystal structure, long‐term stability, and high yield. Based on the systematic experimental data and first‐principle simulation results, Cs2SnX6 displays excellent stability against moisture, light, and high temperature, which can be ascribed to the unique vacancy‐ordered defect‐variant structure, stable chemical compositions with Sn4+, as well as the lower formation enthalpy for Cs2SnX6. Additionally, photodetectors based on Cs2SnI6 are also fabricated, which show excellent performance and stability. This study provides very useful insights into the development of lead‐free double perovskites with high stability.  相似文献   

6.
7.
Colloidal perovskite nanocrystals (PNCs) combine the outstanding optoelectronic properties of bulk perovskites with strong quantum confinement effects at the nanoscale. Their facile and low‐cost synthesis, together with superior photoluminescence quantum yields and exceptional optical versatility, make PNCs promising candidates for next‐generation optoelectronics. However, this field is still in its early infancy and not yet ready for commercialization due to several open challenges to be addressed, such as toxicity and stability. Here, the key synthesis strategies and the tunable optical properties of PNCs are discussed. The photophysical underpinnings of PNCs, in correlation with recent developments of PNC‐based optoelectronic devices, are especially highlighted. The final goal is to outline a theoretical scaffold for the design of high‐performance devices that can at the same time address the commercialization challenges of PNC‐based technology.  相似文献   

8.
This paper reports highly bright and efficient CsPbBr3 perovskite light‐emitting diodes (PeLEDs) fabricated by simple one‐step spin‐coating of uniform CsPbBr3 polycrystalline layers on a self‐organized buffer hole injection layer and stoichiometry‐controlled CsPbBr3 precursor solutions with an optimized concentration. The PeLEDs have maximum current efficiency of 5.39 cd A?1 and maximum luminance of 13752 cd m?2. This paper also investigates the origin of current hysteresis, which can be ascribed to migration of Br? anions. Temperature dependence of the electroluminescence (EL) spectrum is measured and the origins of decreased spectrum area, spectral blue‐shift, and linewidth broadening are analyzed systematically with the activation energies, and are related with Br? anion migration, thermal dissociation of excitons, thermal expansion, and electron–phonon interaction. This work provides simple ways to improve the efficiency and brightness of all‐inorganic polycrystalline PeLEDs and improves understanding of temperature‐dependent ion migration and EL properties in inorganic PeLEDs.  相似文献   

9.
The detection of nanoscale objects is essential for homeland security, environmental monitoring, and early‐stage diagnostics. In the past few years, optical sensors have mostly been developed with passive devices such as microcavity and plasmonic nanostructures, which require external laser sources to operate and significantly increase the costs and bulks of sensing systems. To date, the potential of their active counterparts in optical sensors has not been well explored. Herein, a novel and robust mechanism to detect nanoscale objects with lead halide perovskite microlasers is demonstrated. Nanoparticles can be simply detected and sized by measuring the intensity of scattered laser light. In principle, the proposed concept is also applicable to electrically driven microlasers and it could find applications in portable point‐of‐care devices.  相似文献   

10.
11.
Near‐infrared (NIR) light‐emitting diodes (LEDs), with emission wavelengths between 800 and 950 nm, are useful for various applications, e.g., night‐vision devices, optical communication, and medical treatments. Yet, devices using thin film materials like organic semiconductors and lead based colloidal quantum dots face certain fundamental challenges that limit the improvement of external quantum efficiency (EQE), making the search of alternative NIR emitters important for the community. In this work, efficient NIR LEDs with tunable emission from 850 to 950 nm, using lead–tin (Pb‐Sn) halide perovskite as emitters are demonstrated. The best performing device exhibits an EQE of 5.0% with a peak emission wavelength of 917 nm, a turn‐on voltage of 1.65 V, and a radiance of 2.7 W Sr?1 m?2 when driven at 4.5 V. The emission spectra of mixed Pb‐Sn perovskites are tuned either by changing the Pb:Sn ratio or by incorporating bromide, and notably exhibit no phase separation during device operation. The work demonstrates that mixed Pb‐Sn perovskites are promising next generation NIR emitters.  相似文献   

12.
13.
The tremendous interest focused on organic–inorganic halide perovskites since 2012 derives from their unique optical and electrical properties, which make them excellent photovoltaic materials. Pb‐based halide perovskite solar cells, in particular, currently stand at a record efficiency of ≈23%, fulfilling their potential toward commercialization. However, because of the toxicity concerns of Pb‐based perovskite solar cells, their market prospects are hindered. In principle, Pb can be replaced with other less‐toxic, environmentally benign metals. Sn‐based perovskites are thus the far most promising alternative due to their very similar and perhaps even superior semiconductor characteristics. After years of effort invested in Sn‐based halide perovskites, sufficient breakthroughs have finally been achieved that make them the next runners up to the Pb halide perovskites. To help the reader better understand the nature of Sn‐based halide perovskites, their optical and electrical properties are systematically discussed. Recent progress in Sn‐based perovskite solar cells, focusing mainly on film fabrication methods and different device architectures, and highlighting roadblocks to progress and opportunities for future work are reviewed. Finally, a brief overview of mixed Sn/Pb‐based systems with their anomalous yet beneficial optical trends are discussed. The current challenges and a future outlook for Sn‐based perovskites are discussed.  相似文献   

14.
15.
Developing environmentally friendly perovskites has become important in solving the toxicity issue of lead‐based perovskite solar cells. Here, the first double perovskite (Cs2AgBiBr6) solar cells using the planar structure are demonstrated. The prepared Cs2AgBiBr6 films are composed of high‐crystal‐quality grains with diameters equal to the film thickness, thus minimizing the grain boundary length and the carrier recombination. These high‐quality double perovskite films show long electron–hole diffusion lengths greater than 100 nm, enabling the fabrication of planar structure double perovskite solar cells. The resulting solar cells based on planar TiO2 exhibit an average power conversion efficiency over 1%. This work represents an important step forward toward the realization of environmentally friendly solar cells and also has important implications for the applications of double perovskites in other optoelectronic devices.  相似文献   

16.
Self‐healing, where a modification in some parameter is reversed with time without any external intervention, is one of the particularly interesting properties of halide perovskites. While there are a number of studies showing such self‐healing in perovskites, they all are carried out on thin films, where the interface between the perovskite and another phase (including the ambient) is often a dominating and interfering factor in the process. Here, self‐healing in perovskite (methylammonium, formamidinium, and cesium lead bromide (MAPbBr3, FAPbBr3, and CsPbBr3)) single crystals is reported, using two‐photon microscopy to create damage (photobleaching) ≈110 µm inside the crystals and to monitor the recovery of photoluminescence after the damage. Self‐healing occurs in all three perovskites with FAPbBr3 the fastest (≈1 h) and CsPbBr3 the slowest (tens of hours) to recover. This behavior, different from surface‐dominated stability trends, is typical of the bulk and is strongly dependent on the localization of degradation products not far from the site of the damage. The mechanism of self‐healing is discussed with the possible participation of polybromide species. It provides a closed chemical cycle and does not necessarily involve defect or ion migration phenomena that are often proposed to explain reversible phenomena in halide perovskites.  相似文献   

17.
Metal halide perovskites (MHPs) have emerged as promising emitters because of their excellent optoelectronic properties, including high photoluminescence quantum yields (PLQYs), wide‐range color tunability, and high color purity. However, a fundamental limitation of MHPs is their low exciton binding energy, which results in a low radiative recombination rate and the dependence of PLQY on the excitation intensity. Under the operating conditions of light‐emitting diodes (LEDs), the injected current densities are typically lower than the trap density, leading to a low actual PLQY. Moreover, the defects not only initiate the decomposition of MHPs caused by extrinsic factors, but also intrinsically stimulate ion migration across the interface and lead to the corrosion of electrodes due to interaction between those electrodes, even under inert conditions. The passivation of defects has proven to be effective for mitigating the effects of defects in MHPs. Herein, the origins and theoretical calculations of the defect tolerance in MHPs and the impact of defects on both the performance and stability of perovskite LEDs are reviewed. The passivation methods and materials for MHP bulk films and nanocrystals are discussed in detail. Based on the currently reported advances, specific requirements and future research directions for display applications are suggested.  相似文献   

18.
Memristors are emerging as a rising star of new computing and information storage techniques. However, the practical applications are severely challenged by their instability toward harsh conditions, including high moisture, high temperatures, fire, ionizing irradiation, and mechanical bending. In this work, for the first time, lead‐free double perovskite Cs2AgBiBr6 is utilized for environmentally robust memristors, enabling highly efficient information storage. The memory performance of the typical indium‐tin‐oxide/Cs2AgBiBr6/Au sandwich‐like memristors is retained after 1000 switching cycles, 105 s of reading, and 104 times of mechanical bending, comparable to other halide perovskite memristors. Most importantly, the memristive behavior remains robust in harsh environments, including humidity up to 80%, temperatures as high as 453 K, an alcohol burner flame for 10 s, and 60Co γ‐ray irradiation for a dosage of 5 × 105 rad (SI), which is not achieved by any other memristors and commercial flash memory techniques. The realization of an environmentally robust memristor from Cs2AgBiBr6 with a high memory performance will inspire further development of robust electronics using lead‐free double perovskites.  相似文献   

19.
20.
Perovskite nanocrystals (NCs) have attracted attention due to their high photoluminescence quantum yield (PLQY) in solution; however, maintaining high emission efficiency in the solid state remains a challenge. This study presents a solution‐phase synthesis of efficient green‐emitting perovskite NCs (CsPbBr3) embedded in robust and air‐stable rhombic prism hexabromide (Cs4PbBr6) microcrystals, reaching a PLQY of 90%. Theoretical modeling and experimental characterization suggest that lattice matching between the NCs and the matrix contribute to improved passivation, while spatial confinement enhances the radiative rate of the NCs. In addition, dispersing the NCs in a matrix prevents agglomeration, which explains their high PLQY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号