首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
One of the problems occasionally associated with the use of natural dyes in the dyeing of silk is the susceptibility of the dyed yarn to fading in light. While a number of approaches have been used to address this problem, the use of polydopamine (PDA), a known agent with photo‐protective properties, has not been assessed previously. In this study, silk was pretreated with nano‐particulate PDA formed in situ by oxidation of a dopamine solution, then dyed with lac dye or annatto dye as model natural dyes. Photofading rates were significantly reduced in the case of annatto‐dyed, PDA‐coated silk relative to uncoated silk, while wash fastness was unaffected and remained only moderately good. In contrast, no significant change was seen in photofading rates with treated or untreated lac‐dyed silk, and wash fastness was also unaffected. The PDA did not adversely affect resultant colour values if the concentration of the dopamine precursor was kept low. When this was done, acceptable colours were obtained in the dyed silk. Further investigation is warranted of PDA as a photofading protectant and mordant with other natural dyes on silk and other fibres.  相似文献   

2.
The hypothesis that the dried, ground biomass of the red marine alga Gracilaria tenuistipitata could be used for the efficient removal of lac dye from aqueous solution was assessed in this work. The effects of parameters such as initial pH, biosorbent dosage, contact time, initial dye concentration, and temperature on the biosorption capacity of the dye were investigated. Equilibrium data were analysed using Langmuir, Freundlich, and Temkin isotherm models, and the Freundlich model provided the highest coefficient of determination values. Biosorption kinetic data were successfully described with a pseudo‐second‐order model at initial dye concentrations of 50, 80, 100, and 120 mg l?1. The thermodynamic parameters of biosorption – enthalpy change (?H° = ?30.64 kJ mol?1), free energy change (?G° = 4.32 kJ mol?1 at 303 K to 7.78 kJ mol?1 at 333 K), and entropy change (?S° = ?115.38 J mol?1 K?1) – were determined. The negative value of the enthalpy change and positive values of the free energy change indicate that the biosorption process is exothermic and non‐spontaneous. The negative value of the entropy change is consistent with decreased randomness at the solid–liquid interface with dye biosorption. Attenuated total reflectance–Fourier transform infrared spectroscopic analysis confirmed the presence of lac dye on the G. tenuistipitata material. The efficiency of lac dye removal by this biomass material at 20 g l?1 and with an initial dye concentration of 50 mg l?1 in acidic solution was 71%, which indicated its potential usefulness as a new dye biosorbent.  相似文献   

3.
The present study explains the preparation and application of sulfuric acid–treated orange peel (STOP) as a new low-cost adsorbent in the removal of methylene blue (MB) dye from its aqueous solution. The effects of temperature on the operating parameters such as solution pH, adsorbent dose, initial MB dye concentration, and contact time were investigated for the removal of MB dye using STOP. The maximum adsorption of MB dye onto STOP took place in the following experimental conditions: pH of 8.0, adsorbent dose of 0.4 g, contact time of 45 min, and temperature of 30°C. The adsorption equilibrium data were tested by applying both the Langmuir and Freundlich isotherm models. It is observed that the Freundlich isotherm model fitted better than the Langmuir isotherm model, indicating multilayer adsorption, at all studied temperatures. The adsorption kinetic results showed that the pseudo-second-order model was more suitable to explain the adsorption of MB dye onto STOP. The adsorption mechanism results showed that the adsorption process was controlled by both the internal and external diffusion of MB dye molecules. The values of free energy change (ΔG o) and enthalpy change (ΔH o) indicated the spontaneous, feasible, and exothermic nature of the adsorption process. The maximum monolayer adsorption capacity of STOP was also compared with other low-cost adsorbents, and it was found that STOP was a better adsorbent for MB dye removal.  相似文献   

4.
Use of polyester‐type polyurethane foam (PUF) is an effective adsorbent for the removal of hazardous dye: crystal violet (CV) from an aqueous solution. In this adsorption study, the formation of hydrophobic ion pair (opposite charge attraction) between the charged species, i.e., cationic (basic) dye CV and anionic surfactant sodium dodecylsulfate (SDS) sorbed onto PUF. Chemical calculations were performed using quantum simulation to understand ion‐pair formation for CV–SDS at the semiempirical PM6 level. Adsorption studies were performed using 200 mg cylindrical PUF with an overhead stirrer in solutions containing varying compositions of the dye–surfactant mixture. The equilibrium thermodynamics and kinetics of the adsorption process were studies by measuring CV dye removal as a function of time and temperature. Results show that the formation of the dye–surfactant ion pair is necessary for effective adsorption onto PUF. Various adsorption isotherms, viz., Langmuir, Freundlich, Temkin, Dubinin–Radushkevich (DRK), Harkin‐Jura, and several kinetic models, viz., pseudo‐first order, pseudo‐second order, Elovich, and Intraparticle diffusion were used to fit the spectrophotometric result. The equilibrium adsorption data fit to the Langmuir isotherm gives the maximum adsorption of PUF as 33.39 mg g?1 from 200 mL 5.0 × 10?5 mol L?1 CV solution at 298.15 K. The kinetics study showed that the overall adsorption process follows pseudo‐second‐order kinetics. The Morris–Weber model suggests that an intraparticle diffusion process is active in controlling the adsorption rate. The Freundlich, Temkin, DRK adsorption isotherms showed that solute dye transfers from solution to the PUF adsorbent surface through physical adsorption. The Langmuir and Harkin‐Jura adsorption isotherms suggest that the adsorbent surface is homogeneous in nature. The thermodynamic data showed that the adsorption process is spontaneous and endothermic with a positive enthalpy change and a negative change in Gibb's energy.  相似文献   

5.
Acid-leached red mud, a type of inorganic-adsorptive by-product of bauxite Bayer process via acid leaching, was used for the removal of U(VI)/Th(IV) from aqueous solutions. Variables of the adsorption such as contact time, temperature, solution pH, initial concentration and dose of acid-leached red mud were investigated. The results indicated that the adsorption is strongly affected by dosage, the solution pH, contact time and initial concentration. The isothermal data were fitted with both Langmuir and Freundlich equations, but the data fitted the former better than the latter. A pseudo-first-order kinetic model and pseudo-second-order kinetic model were used to describe the kinetic data, but the pseudo-second-order kinetic model was the better. Thermodynamic parameters such as enthalpy (ΔH ), entropy (ΔS ) and free energy change (ΔG ) were calculated, and the negative ΔG values of U(VI)/Th(IV) at different temperatures confirmed the adsorption processes were spontaneous.  相似文献   

6.
The adsorption of toluene was studied by using various types of adsorbents (Na+- and Al3+-bentonite) modified by dodecyltrimethylammonium bromide (DTAB). The characterization of these new sorbing matrices by XRD and IR indicates that DTAB tallow interacted with bentonite and increased the interlayer spacing of the clay with double-layered formation. Adsorption of toluene on modified bentonites was characterized by linear isotherms with no limitation of adsorption within the concentration range studied, thus indicating a mechanism of adsorption due to partition. Adsorption was fast and favored by a slightly acid medium. Pseudo-first-order, pseudo-second-order, the Elovich equation, and intra-particle diffusion models were used to fit the experimental data. The adsorption kinetic of toluene was described by the pseudo-first order onto DTAB-Na-bent, and pseudo-second order onto DTAB-Al-bent. The intra-particle diffusion process was identified as the main mechanism controlling the rate of toluene adsorption. Thermodynamic parameters such as standard free energy change (ΔG 0), the standard enthalpy change (ΔH 0), and the standard entropy (ΔS 0) were also evaluated. The variation of adsorption energy versus the types of adsorbent suggested a physical adsorption mechanism.  相似文献   

7.
Flavonoid constituents from the aqueous extract of the stems of Combretum latifolium Blume sourced in Thailand have potential use as dyestuffs for cotton dyeing. In an effort to improve current natural dyeing methods with this extract, further aspects of the process were studied. It was found that, before equilibrium was reached, an increase in temperature led to an increase in dye adsorption rate of the extract; the initial rate and extent of dye adsorption was further increased by the addition of sodium chloride to the dyebath. In addition, cotton yarn pretreated with a chitosan solution (with and without a crosslinking glyoxal solution), followed by dyeing with C. latifolium extract, provided better depth of shade and also gave better fastness to light and washing than the untreated cotton yarn. Post‐mordanting cotton yarn with a biomordant solution from Memecylon scutellatum leaves also gave good light and wash fastness of the resulting dyed cotton, comparable with the dyeing results with the less environmentally friendly alum as a mordant.  相似文献   

8.
《分离科学与技术》2012,47(9):1462-1471
The potential of waste seashells powder, as a new adsorbent for Brilliant Red HE-3B reactive dye removal from aqueous solutions, was examined by the batch technique. The Freundlich, Langmuir, and Dubinin-Radushkevich adsorption models were applied to describe the equilibrium sorption data and to determine the corresponding isotherm constants. The values of the thermodynamic parameters, ΔG, ΔH, and ΔS, indicate that the sorption of reactive dye is a spontaneous and endothermic process. The kinetic data evaluated by pseudo-first order, pseudo-second order, and intraparticle diffusion kinetic models suggested that the sorption of reactive dye onto seashell is a complex process and both surface sorption and intraparticle diffusion contributes to the rate limiting step.  相似文献   

9.
10.
Adsorption of cationic dye from aqueous solutions by activated carbon   总被引:1,自引:0,他引:1  
Batch sorption experiments were carried out to remove a cationic dye, methylene blue (MB), from its aqueous solutions using a commercial activated carbon as an adsorbent. Operating variables studied were pH, stirring speed, initial methylene blue concentration and temperature. Adsorption process was attained to the equilibrium within 5 min. The adsorbed amount MB dye on activated carbon slightly changed with increasing pH, and temperature, indicating an endothermic process. The adsorption capacity of methylene blue did not significantly change with increasing stirring speed. The experimental data were analyzed by various isotherm models, and found that the isotherm data were reasonably well correlated by Langmuir isotherm. Adsorption measurements showed that the process was very fast and physical in nature. Thermodynamic parameters such as the adsorption entropy (ΔSo) and adsorption enthalpy (ΔHo) were also calculated as 0.165 kJ mol−1 K−1 and 49.195 kJ mol−1, respectively. The ΔGo values varied in range with the mean values showing a gradual increase from −0.256 to −0.780 to −2.764 and −7.914 kJ mol−1 for 293, 313, 323 and 333 K, respectively, in accordance with the positive adsorption entropy value of the adsorption process.  相似文献   

11.
The colour components from the flowers of Tabebuia argentea have been isolated and characterised as rutin and epigallocatechin gallate using spectral techniques. Adsorption kinetic and thermodynamic studies of these colour components on silk yarn have been investigated. It is noted that the adsorption is an endothermic process. The dyeing studies have been carried out at pH 4. The mordanting studies revealed that the post‐mordanting technique could only increase the dye performance marginally. The fastness properties of the dyed silk were determined. The adsorption isotherm studies showed that the Langmuir model fitted the experimental data very well with a high regression coefficient.  相似文献   

12.
《分离科学与技术》2012,47(13):1898-1905
Batch adsorption studies were carried out using H2SO4 modified sugarcane bagasse (HMSB) for the removal of hazardous Crystal Violet (CV) dye from aqueous solutions. The effects of initial solution pH, adsorbent dose, and temperature on the adsorption process were investigated. The Langmuir isotherm model well described the equilibrium dye uptake while the pseudo-second-order kinetic model showed good agreement with the experimental kinetic data. Gibb's free energy change (ΔG0) was spontaneous for all interactions, and the adsorption process exhibited endothermic enthalpy values. Results suggest that HMSB is an effective adsorbent for the removal of CV from wastewater.  相似文献   

13.
In this work, a composite from α‐cellulose coated with conducting polypyrrole by in situ polymerization using potassium persulfate as oxidant was obtained. The composite was characterized by fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry, UV/Vis spectroscopy, and scanning electron microscopy (SEM) analysis showed homogeneous coating of α‐cellulose with polypyrrole (PPy) to produce a composite with a conductivity of 3.5 × 10−5 S/m. Batch aqueous adsorption experiments of the reactive red 120 (RR120) dye onto the synthesized material were conducted. The results showed that this composite is an efficient adsorbent for RR120 dye removal. For the adsorption experiments set to an initial pH of 3.9, the adsorption capacity was 15.6 mg of dye/g of composite for an equilibrium concentration (in the liquid) of RR120 dye equal to 1,000 mg/L, whereas a value of 96.1 mg of dye/g of composite was obtained when the solution pH was set to 2.0 for the same equilibrium concentration. When performing adsorption experiments using pure α‐cellulose, dye adsorption was insignificant at any pH value. Adsorption isotherm for RR120 was described by a typical Freundlich model. The transient adsorption of RR120 on the synthesized composite was described by a general three‐resistance model that includes the transport on the film that surrounds the composite particles, diffusion inside the particles, and adsorption on the surface of the particles. A fitting of the uptake curves was performed allowing the estimation of values for the effective diffusivity, D0, and the adsorption rate coefficient, k1. For the adsorption experiments with an initial pH value set to 3.9, D0 was estimated as 1.05 × 10−10 m2/s, whereas k1 was 1.65 × 10−4 Ln/g mgn − 1 s; the corresponding values of k1 at pH = 2 and 9.0 were 3.18 × 10−4 and 5.16 × 10−5, respectively. POLYM. COMPOS., 36:312–321, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
The adsorption of malachite green onto bentonite in a batch adsorber has been studied. The effects of contact time, initial pH and initial dye concentration on the malachite green adsorption by the bentonite have been studied. Malachite green removal was seen to increase with increasing contact time until equilibrium and initial dye concentration, and the adsorption capacity of bentonite was independent of initial pH in the range 3–11. Four kinetic models, the pseudo first- and second-order equations, the Elovich equation and the intraparticle diffusion equation, were selected to follow the adsorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and correlation coefficients, for each kinetic equation were calculated and discussed. It was shown that the adsorption of malachite green onto bentonite could be described by the pseudo second-order equation. The experimental isotherm data were analyzed using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich equations. Adsorption of malachite green onto bentonite followed the Langmuir isotherm. The thermodynamic parameters, such as ΔH, ΔS and ΔG, were also determined and evaluated. A single stage batch adsorber was designed for different adsorbent mass/treated effluent volume ratios using the Langmuir isotherm.  相似文献   

15.
Monosize, nonporous poly(glycidyl methacrylate) [poly(GMA)] beads were prepared by dispersion polymerization. Cibacron Blue F3GA was covalently attached onto the poly(GMA) beads for adsorption of recombinant interferon‐α (rHuIFN‐α). Monosize poly(GMA) beads were characterized by scanning electron microscopy. Dye‐carrying beads (1.73 mmol/g) were used in the adsorption–elution studies. The effect of initial concentration of rHuIFN‐α, pH, ionic strength, and temperature on the adsorption efficiency was studied in a batch system. Nonspecific adsorption of rHuIFN‐α on the beads was 0.78 mg/g. Dye attachment significantly increased the rHuIFN‐α adsorption up to 181.7 mg/g. Equilibrium adsorption of rHuIFN‐α onto the dye‐carrying beads increased with increasing temperature. Negative change in free energy (ΔG0 < 0) indicated that the adsorption was a thermodynamically favorable process. ΔS and ΔH values were 146.1 J/mol K and ?37.39 kJ/mol, respectively. Significant amount of the adsorbed rHuIFN‐α (up to 97.2%) was eluted in the elution medium containing 1.0M NaCl in 1 h. To determine the effects of adsorption conditions on possible conformational changes of rHuIFN‐α structure, fluorescence spectrophotometry was employed. We concluded that dye‐affinity beads can be applied for rHuIFN‐α adsorption without causing any significant conformational changes. Repeated adsorption–elution processes showed that these beads are suitable for rHuIFN‐α adsorption. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 975–981, 2007  相似文献   

16.
The adsorption of bromophenol red (BPR) onto three adsorbents including palladium, silver and zinc oxide nanoparticles loaded on activated carbon (Pd-NP-AC, Ag-NP-AC and ZnO-NP-AC) in a batch system has been studied and the influence of various parameters has been optimized. The influence of time on removal of BPR on all adsorbent was investigated and experimental data were analyzed by four kinetic models including pseudo first and second-order, Elovich and the intraparticle diffusion equations. Following fitting the experimental data to these models, the respective parameters of each model such as rate constants, equilibrium adsorption capacities and correlation coefficients for each model were investigated and based on well known criterion their applicability was judged. It was seen that the adsorption of BPR onto all adsorbents sufficiently described by the pseudo second-order equation in addition to interparticle diffusion model. The adsorption of BPR on all adsorbent was investigated at various concentration of dye and the experimental equilibrium data were analyzed and fitted to the Langmuir, Freundlich, Tempkin, Dubinin, and Radushkevich equations. A single stage in batch process was efficient and suitable for all adsorbents using the Langmuir isotherm with maximum adsorption of 143 mg g?1 for Pd-NP-AC, 250 mg g?1 for Ag-NP-AC and 200 mg g?1 for ZnO-NR-AC. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° for Pd-NP-AC adsorbent were calculated.  相似文献   

17.
《Dyes and Pigments》2008,76(3):701-713
The use of low-cost and ecofriendly adsorbents was investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. Sepiolite was used as an adsorbent for the removal of methyl violet (MV) and methylene blue (MB) from aqueous solutions. The rate of adsorption was investigated under various parameters such as contact time, stirring speed, ionic strength, pH and temperature for the removal of these dyes. Kinetic study showed that the adsorption of dyes on sepiolite was a gradual process. Quasi-equilibrium reached within 3 h. Adsorption rate increased with the increase in ionic strength, pH and temperature. Pseudo-first-order, the Elvoich equation, pseudo-second-order, mass transfer and intra-particle diffusion models were used to fit the experimental data. The sorption kinetics of MV and MB onto sepiolite was described by the pseudo-second-order kinetic equation. Intra-particle diffusion process was identified as the main mechanism controlling the rate of the dye sorption. The diffusion coefficient, D, was found to increase when the ionic strength, pH and temperature were raised. Thermodynamic activation parameters such as ΔG1, ΔS1 and ΔH1 were also calculated.  相似文献   

18.
Cashew nut shell (CNS) is an agricultural waste was investigated as a new adsorbent for the removal of zinc(II) from aqueous environment. Effects of solution pH, CNS dose, contact time, initial zinc(II) concentration and temperature on removal efficiency were tested and optimum conditions were evaluated. The equilibrium data were fitted well with Langmuir isotherm model and pseudo‐second‐order kinetic model. Langmuir monolayer adsorption capacity of CNS was examined as 24.98 mg/g. Changes in standard Gibbs free energy (?G°), standard enthalpy (?H°) and standard entropy (?S°) showed that the sorption of zinc(II) ions onto CNS are spontaneous and exothermic at 303–333 K. Sorption process was found to be controlled by both surface and pore diffusion. A batch adsorber was designed for different CNS dose to effluent volume ratios using Langmuir equation. Effective diffusivity values were found to be 1.927 × 10?11 (10 mg/L), 2.135 × 10?11 (20 mg/L), 2.267 × 10?11 (30 mg/L), 2.305 × 10?11 (40 mg/L) and 2.362 × 10?11 (50 mg/L) m2/s. © 2011 Canadian Society for Chemical Engineering  相似文献   

19.
Experimental investigations were carried out using commercially available kaolin to adsorb two different toxic cationic dyes namely crystal violet and brilliant green from aqueous medium. Kaolin was characterized by performing particle size distribution, BET surface area measurement and XRD analysis. The effects of initial dye concentration, contact time, adsorbent dose, stirring speed, pH, salt concentration and temperature were studied in batch mode. The extent of adsorption was strongly dependent on pH of solution. Free energy of adsorption (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) changes were calculated. Adsorption kinetic was verified by pseudo-first-order, pseudo-second-order and intra-particle-diffusion models. The rate of adsorption of both crystal violet and brilliant green followed the pseudo-second-order model for the dye concentrations studied in the present case. The dye adsorption process was found to be external mass transfer controlled at earlier stage and intra-particle diffusion controlled at later stage. Calculated external mass transfer coefficient showed that crystal violet dye adsorbed faster than brilliant green on kaolin. Adsorption of crystal violet and brilliant green on kaolin followed the Langmuir adsorption isotherm.  相似文献   

20.
《分离科学与技术》2012,47(5):1239-1259
Abstract

The present study aims to evaluate the influence of various experimental parameters viz. initial pH (pH 0), adsorbent dose, contact time, initial concentration and temperature on the adsorptive removal of furfural from aqueous solution by commercial grade activated carbon (ACC). Optimum conditions for furfural removal were found to be pH 0 ≈ 5.9, adsorbent dose ≈ 10 g/l of solution and equilibrium time ≈ 6.0 h. The adsorption followed pseudo‐second‐order kinetics. The effective diffusion coefficient of furfural was of the order of 10?13 m2/s. Furfural adsorption onto ACC was found to be best represented by the Redlich‐Peterson isotherm. A decrease in the temperature of the operation favorably influenced the adsorption of furfural onto ACC. The positive values of the change in entropy (ΔS 0); and the negatived value of heat of adsorption (ΔH 0) and change in Gibbs free energy (ΔG 0) indicated feasible, exothermic, and spontaneous nature of furfural adsorption onto ACC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号