首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO2Li and ROLi) on the top and abundant inorganic components (Li2CO3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.  相似文献   

4.
5.
6.
Uncontrollable Li dendrite growth and low Coulombic efficiency severely hinder the application of lithium metal batteries. Although a lot of approaches have been developed to control Li deposition, most of them are based on inhibiting lithium deposition on protrusions, which can suppress Li dendrite growth at low current density, but is inefficient for practical battery applications, with high current density and large area capacity. Here, a novel leveling mechanism based on accelerating Li growth in concave fashion is proposed, which enables uniform and dendrite‐free Li plating by simply adding thiourea into the electrolyte. The small thiourea molecules can be absorbed on the Li metal surface and promote Li growth with a superfilling effect. With 0.02 m thiourea added in the electrolyte, Li | Li symmetrical cells can be cycled over 1000 cycles at 5.0 mA cm?2, and a full cell with LiFePO4 | Li configuration can even maintain 90% capacity after 650 cycles at 5.0 C. The superfilling effect is also verified by computational chemistry and numerical simulation, and can be expanded to a series of small chemicals using as electrolyte additives. It offers a new avenue to dendrite‐free lithium deposition and may also be expanded to other battery chemistries.  相似文献   

7.
Lithium‐metal batteries (LMBs), as one of the most promising next‐generation high‐energy‐density storage devices, are able to meet the rigid demands of new industries. However, the direct utilization of metallic lithium can induce harsh safety issues, inferior rate and cycle performance, or anode pulverization inside the cells. These drawbacks severely hinder the commercialization of LMBs. Here, an up‐to‐date review of the behavior of lithium ions upon deposition/dissolution, and the failure mechanisms of lithium‐metal anodes is presented. It has been shown that the primary causes consist of the growth of lithium dendrites due to large polarization and a strong electric field at the vicinity of the anode, the hyperactivity of metallic lithium, and hostless infinite volume changes upon cycling. The recent advances in liquid organic electrolyte (LOE) systems through modulating the local current density, anion depletion, lithium flux, the anode–electrolyte interface, or the mechanical strength of the interlayers are highlighted. Concrete strategies including tailoring the anode structures, optimizing the electrolytes, building artificial anode–electrolyte interfaces, and functionalizing the protective interlayers are summarized in detail. Furthermore, the challenges remaining in LOE systems are outlined, and the future perspectives of introducing solid‐state electrolytes to radically address safety issues are presented.  相似文献   

8.
9.
Much attention is paid to metal lithium as a hopeful negative material for reversible batteries with a high specific capacity. Although applying 3D hosts can relieve the dendrite growth to some extent, gradient‐distributed lithium ion in 3D uniform hosts still induces uncontrolled lithium dendrites growth, especially at high lithium capacity and high current density. Herein, a 3D conductive carbon nanofiber framework with gradient‐distributed ZnO particles as nucleation seeds (G‐CNF) to regulate lithium deposition is proposed. Based on such a unique structure, the G‐CNF electrode exhibits a high average Coulombic efficiency (CE) of 98.1% for 700 cycles at 0.5 mA cm?2. Even at 5 mA cm?2, the G‐CNF electrode performs a stable cycling process and high CE of 96.0% for over 200 cycles. When the lithium‐deposited G‐CNF (G‐CNF‐Li) anode is applied in a full cell with a commercial LiFePO4 cathode, it exhibits a stable capacity of 115 mAh g?1 and high retention of 95.7% after 300 cycles. Through inducing the gradient‐distributed nucleation seeds to counter the existing Li‐ion concentration polarization, a uniform and stable lithium deposition process in the 3D host is achieved even under the condition of high current density.  相似文献   

10.
Sodium (Na) metal is one of the most promising electrode materials for next‐generation low‐cost rechargeable batteries. However, the challenges caused by dendrite growth on Na metal anodes restrict practical applications of rechargeable Na metal batteries. Herein, a nitrogen and sulfur co‐doped carbon nanotube (NSCNT) paper is used as the interlayer to control Na nucleation behavior and suppress the Na dendrite growth. The N‐ and S‐containing functional groups on the carbon nanotubes induce the NSCNTs to be highly “sodiophilic,” which can guide the initial Na nucleation and direct Na to distribute uniformly on the NSCNT paper. As a result, the Na‐metal‐based anode (Na/NSCNT anode) exhibits a dendrite‐free morphology during repeated Na plating and striping and excellent cycling stability. As a proof of concept, it is also demonstrated that the electrochemical performance of sodium–oxygen (Na–O2) batteries using the Na/NSCNT anodes show significantly improved cycling performances compared with Na–O2 batteries with bare Na metal anodes. This work opens a new avenue for the development of next‐generation high‐energy‐density sodium‐metal batteries.  相似文献   

11.
12.
The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high‐surface‐area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen‐doped graphene as the sought‐after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite‐free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long‐term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high‐energy‐density rechargeable lithium batteries.  相似文献   

13.
14.
Notorious lithium dendrite causes severe capacity fade and harsh safety issues of lithium metal batteries, which hinder the practical applications of lithium metal electrodes in higher energy rechargeable batteries. Here, a kind of 3D‐cross‐linked composite network is successfully employed as a flexible‐rigid coupling protective layer on a lithium metal electrode. During the plating/stripping process, the composite protective layer would enable uniform distribution of lithium ions in the adjacent regions of the lithium electrode, resulting in a dendrite‐free deposition at a current density of 2 mA cm?2. The LiNi0.5Mn1.5O4‐based lithium metal battery presents an excellent cycling stability at a voltage range of 3.5–5.0 V with the induction of 3D‐cross‐linked composite protective layer. From an industrial field application of view, thin lithium metal electrodes (40 µm, with 4 times excess lithium) can be used in LiNi0.5Mn1.5O4 (with industrially significant loading of 18 mg cm?2 and 2.6 mAh cm?2)‐based lithium metal batteries, which reveals a promising opportunity for practical applicability in high energy lithium metal batteries.  相似文献   

15.
The current boom of safe and renewable energy storage systems is driving the recent renaissance of Zn‐ion batteries. However, the notorious tip‐induced dendrite growth on the Zn anode restricts their further application. Herein, the first demonstration of constructing a flexible 3D carbon nanotube (CNT) framework as a Zn plating/stripping scaffold is constituted to achieve a dendrite‐free robust Zn anode. Compared with the pristine deposited Zn electrode, the as‐fabricated Zn/CNT anode affords lower Zn nucleation overpotential and more homogeneously distributed electric field, thus being more favorable for highly reversible Zn plating/stripping with satisfactory Coulombic efficiency rather than the formation of Zn dendrites or other byproducts. As a consequence, a highly flexible symmetric cell based on the Zn/CNT anode presents appreciably low voltage hysteresis (27 mV) and superior cycling stability (200 h) with dendrite‐free morphology at 2 mA cm?2, accompanied by a high depth of discharge (DOD) of 28%. Such distinct performance overmatches most of recently reported Zn‐based anodes. Additionally, this efficient rechargeability of the Zn/CNT anode also enables a substantially stable Zn//MnO2 battery with 88.7% capacity retention after 1000 cycles and remarkable mechanical flexibility.  相似文献   

16.
The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single‐ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long‐term working conditions. Herein, a robust dual‐phase artificial interface is constructed, where not only the single‐ion‐conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al‐doped Li6.75La3Zr1.75Ta0.25O12‐based bottom layer and a lithiated Nafion top layer. The as‐constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li‐ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite‐free Li deposition behavior in a working battery.  相似文献   

17.
18.
19.
Batteries constructed via 3D printing techniques have inherent advantages including opportunities for miniaturization, autonomous shaping, and controllable structural prototyping. However, 3D‐printed lithium metal batteries (LMBs) have not yet been reported due to the difficulties of printing lithium (Li) metal. Here, for the first time, high‐performance LMBs are fabricated through a 3D printing technique using cellulose nanofiber (CNF), which is one of the most earth‐abundant biopolymers. The unique shear thinning properties of CNF gel enables the printing of a LiFePO4 electrode and stable scaffold for Li. The printability of the CNF gel is also investigated theoretically. Moreover, the porous structure of the CNF scaffold also helps to improve ion accessibility and decreases the local current density of Li anode. Thus, dendrite formation due to uneven Li plating/stripping is suppressed. A multiscale computational approach integrating first‐principle density function theory and a phase‐field model is performed and reveals that the porous structures have more uniform Li deposition. Consequently, a full cell built with a 3D‐printed Li anode and a LiFePO4 cathode exhibits a high capacity of 80 mA h g?1 at a charge/discharge rate of 10 C with capacity retention of 85% even after 3000 cycles.  相似文献   

20.
Lithium metal is considered as the most promising anode material due to its high theoretical specific capacity and the low electrochemical reduction potential. However, severe dendrite problems have to be addressed for fabricating stable and rechargeable batteries (e.g., lithium–iodine batteries). To fabricate a high‐performance lithium–iodine (Li–I2) battery, a 3D stable lithium metal anode is prepared by loading of molten lithium on carbon cloth doped with nitrogen and phosphorous. Experimental observations and theoretical calculation reveal that the N,P codoping greatly improves the lithiophilicity of the carbon cloth, which not only enables the uniform loading of molten lithium but also facilitates reversible lithium stripping and plating. Dendrites formation can thus be significantly suppressed at a 3D lithium electrode, leading to stable voltage profiles over 600 h at a current density of 3 mA cm?2. A fuel cell with such an electrode and a lithium–iodine cathode shows impressive long‐term stability with a capacity retention of around 100% over 4000 cycles and enhanced high‐rate capability. These results demonstrate the promising applications of 3D stable lithium metal anodes in next‐generation rechargeable batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号