首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High‐throughput fabrication of microstructured surfaces with multi‐directional, re‐entrant, or otherwise curved features is becoming increasingly important for applications such as phase change heat transfer, adhesive gripping, and control of electromagnetic waves. Toward this goal, curved microstructures of aligned carbon nanotubes (CNTs) can be fabricated by engineered variation of the CNT growth rate within each microstructure, for example by patterning of the CNT growth catalyst partially upon a layer which retards the CNT growth rate. This study develops a finite‐element simulation framework for predictive synthesis of complex CNT microarchitectures by this strain‐engineered growth process. The simulation is informed by parametric measurements of the CNT growth kinetics, and the anisotropic mechanical properties of the CNTs, and predicts the shape of CNT microstructures with impressive fidelity. Moreover, the simulation calculates the internal stress distribution that results from extreme deformation of the CNT structures during growth, and shows that delamination of the interface between the differentially growing segments occurs at a critical shear stress. Guided by these insights, experiments are performed to study the time‐ and geometry‐depended stress development, and it is demonstrated that corrugating the interface between the segments of each microstructure mitigates the interface failure. This study presents a methodology for 3D microstructure design based on “pixels” that prescribe directionality to the resulting microstructure, and show that this framework enables the predictive synthesis of more complex architectures including twisted and truss‐like forms.  相似文献   

2.
Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high‐performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large‐scale man‐made structures than those offered by original butterfly wings.  相似文献   

3.
Morpho butterflies are famous for their wings' brilliant structural colors arising from periodic nanostructures, which show great potential value for fundamental research and practical applications. Here, a novel cellular mechanical visualizable biosensor formed by assembling engineered cardiac tissues on the Morpho butterfly wings is presented. The assembled cardiomyocytes benefit from the periodic parallel nanoridges of the wings and can recover their autonomic beating ability with guided cellular orientation and good contraction performance. As the beating processes are accompanied by the cardiomyocytes' elongation and contraction, the elastic butterfly wing substrate undergoes the same cycle of deformations, which causes corresponding synchronous shifts in their structural colors and photonic bandgaps for self‐reporting of the cell mechanics. It is demonstrated that this self‐reporting performance can be further improved by adding oriented carbon nanotubes in the nanoridges of the wings for the culture. In addition, taking advantage of the similar size of the cardiomyocyte and a single Morpho wing scale, the investigation of single‐cell‐level mechanics can be realized by detecting the optical performance of a single scale. These remarkable properties make these butterfly wings ideal platforms for biomedical research.  相似文献   

4.
Herein, a mushroom‐like reentrant structure is proposed, inspired by springtails, to create a selective liquid sliding surface by implementing a simple yet sturdy silicon fabrication and lithography method. The fabricated arrays display high structural fidelity, presenting a novel geometry of a concave tip. The mushroom‐like head shape of these structures is found to have superomniphobicity, which is independent of a variation of temperatures for even low surface tension liquids such as mineral oil. A design rule for the novel cap of the proposed structures, which results in a selective liquid sliding property with deionized (DI) water and mineral oil, is also investigated. It is demonstrated that oil starts to slide at a roll‐off angle (ROA) 10° and then DI water rolls off at ROA 15° on the same fabricated transparent and flexible surface with repeatable durability.  相似文献   

5.
Low roll‐off angle, high impalement pressure, and mechanical robustness are key requirements for super‐liquid‐repellent surfaces to realize their potential in applications ranging from gas exchange membranes to protective and self‐cleaning materials. Achieving these properties is still a challenge with superamphiphobic surfaces, which can repel both water and low‐surface‐tension liquids. In addition, fabrication procedures of superamphiphobic surfaces are typically slow and expensive. Here, by making use of liquid flame spray, a silicon dioxide–titanium dioxide nanostructured coating is fabricated at a high velocity up to 0.8 m s?1. After fluorosilanization, the coating is superamphiphobic with excellent transparency and an extremely low roll‐off angle; 10 µL drops of n‐hexadecane roll off the surface at inclination angles even below 1°. Falling drops bounce off when impacting from a height of 50 cm, demonstrating the high impalement pressure of the coating. The extraordinary properties are due to a pronounced hierarchical nanotexture of the coating.  相似文献   

6.
Kishimoto S  Wang Q  Xie H  Zhao Y 《Applied optics》2007,46(28):7026-7034
Scanning electron microscopic (SEM) moiré method was used to study the surface structure of three kinds of butterfly wings: Papilio maackii Menetries, Euploea midamus (Linnaeus), and Stichophthalma howqua (Westwood). Gratings composed of curves with different orientations were found on scales. The planar characteristics of gratings and some other planar features of the surface structure of these wings were revealed, respectively, in terms of virtual strain. Experimental results demonstrate that SEM moiré method is a simple, nonlocal, economical, effective technique for determining which grating exists on one whole scale, measuring the dimension and the whole planar structural character of the grating on each scale, as well as characterizing the relationship between gratings on different scales of each butterfly wing. Thus, the SEM moiré method is a useful tool to assist with characterizing the structure of butterfly wings and explaining their excellent properties.  相似文献   

7.
Slippery and hydrophilic surfaces find critical applications in areas as diverse as biomedical devices, microfluidics, antifouling, and underwater robots. Existing methods to achieve such surfaces rely mostly on grafting hydrophilic polymer brushes or coating hydrogel layers, but these methods suffer from several limitations. Grafted polymer brushes are prone to damage and do not provide sufficient mechanical compliance due to their nanometer‐scale thickness. Hydrogel coatings are applicable only for relatively simple geometries, precluding their use for the surfaces with complex geometries and features. Here, a new method is proposed to interpenetrate hydrophilic polymers into the surface of diverse polymers with arbitrary shapes to form naturally integrated “hydrogel skins.” The hydrogel skins exhibit tissue‐like softness (Young's modulus ≈ 30 kPa), have uniform and tunable thickness in the range of 5–25 µm, and can withstand prolonged shearing forces with no measurable damage. The hydrogel skins also provide superior low‐friction, antifouling, and ionically conductive surfaces to the polymer substrates without compromising their original mechanical properties and geometry. Applications of the hydrogel skins on inner and outer surfaces of various practical polymer devices including medical tubing, Foley catheters, cardiac pacemaker leads, and soft robots on massive scales are further demonstrated.  相似文献   

8.
从自然到仿生的超疏水表面的微观结构   总被引:1,自引:1,他引:0  
利用体视显微镜、扫描电子显微镜(SEM)、接触角测量仪对蝴蝶翅膀和蝉翼表面的微细结构及疏水性能进行研究发现:蝴蝶翅膀表面的微米级孔穴和蝉翼表面的纳米阶层柱状结构,是其表面具有超疏水特性的根本原因.受此启发,用激光直写法和软刻蚀法制备出微米级周期排列的方柱、方孔微结构,测量其表面静态接触角分别为151.4°和121.7°.实验结果表明,周期排列的方柱和方孔微结构增强了固体表面的疏水性,且微结构的形态对润湿性能有很大的影响.用经典润湿理论对实验结果进行理论分析发现,Cassie理论与Wenzel理论分别适用于不同程度润湿性能的疏水微结构表面,且微结构的参数影响其表面的润湿性能.  相似文献   

9.
Surfaces enabling directional drop self‐transport have exceptional applications in digital microfluidics, chemical analysis, bioassay, and microreactor technology. While such properties have been obtained by engineering a surface with anisotropic microstructures, a microscopic liquid residue—though it might be invisible macroscopically—is generally left behind the transported drop, resulting in undesired transport loss and severely limiting practical applications of the surface. Here, the origin of microscopic liquid residue is studied by investigating directional drop self‐transport on anisotropic surfaces made of radially arranged omniphobic microstripes. It is revealed that the occurrence of a liquid residue is governed by a transport‐velocity‐dependent dynamic wetting mechanism involving the formation of entrained thin liquid films at high capillary numbers while the local dynamic receding contact angle vanishes. Rayleigh‐like breakup of the liquid films leads to the microscopic liquid residue. It is further shown that a liquid‐like coating featuring highly flexible molecular chains can effectively suppress the formation of entrained liquid films at high transport velocities, thereby facilitating lossless and fast drop self‐transport on anisotropic omniphobic surfaces.  相似文献   

10.
A facile methodology for the large‐scale production of layer‐controlled MoS2 layers on an inexpensive substrate involving a simple coating of single source precursor with subsequent roll‐to‐roll‐based thermal decomposition is developed. The resulting 50 cm long MoS2 layers synthesized on Ni foils possess excellent long‐range uniformity and optimum stoichiometry. Moreover, this methodology is promising because it enables simple control of the number of MoS2 layers by simply adjusting the concentration of (NH4)2MoS4. Additionally, the capability of the MoS2 for practical applications in electronic/optoelectronic devices and catalysts for hydrogen evolution reaction is verified. The MoS2‐based field effect transistors exhibit unipolar n‐channel transistor behavior with electron mobility of 0.6 cm2 V?1 s?1 and an on‐off ratio of ≈10³. The MoS2‐based visible‐light photodetectors are fabricated in order to evaluate their photoelectrical properties, obtaining an 100% yield for active devices with significant photocurrents and extracted photoresponsivity of ≈22 mA W?1. Moreover, the MoS2 layers on Ni foils exhibit applicable catalytic activity with observed overpotential of ≈165 mV and a Tafel slope of 133 mV dec?1. Based on these results, it is envisaged that the cost‐effective methodology will trigger actual industrial applications, as well as novel research related to 2D semiconductor‐based multifaceted applications.  相似文献   

11.
Anisotropic textured surfaces allow water striders to walk on water, butterflies to shed water from their wings and plants to trap insects and pollen. Capturing these natural features in biomimetic surfaces is an active area of research. Here, we report an engineered nanofilm, composed of an array of poly(p-xylylene) nanorods, which demonstrates anisotropic wetting behaviour by means of a pin-release droplet ratchet mechanism. Droplet retention forces in the pin and release directions differ by up to 80 μN, which is over ten times greater than the values reported for other engineered anisotropic surfaces. The nanofilm provides a microscale smooth surface on which to transport microlitre droplets, and is also relatively easy to synthesize by a bottom-up vapour-phase technique. An accompanying comprehensive model successfully describes the film's anisotropic wetting behaviour as a function of measurable film morphology parameters.  相似文献   

12.
Epidermal sensing devices offer great potential for real‐time health and fitness monitoring via continuous characterization of the skin for vital morphological, physiological, and metabolic parameters. However, peeling them off can be difficult and sometimes painful especially when these skin‐mounted devices are applied on sensitive or wounded regions of skin due to their strong adhesion. A set of biocompatible and water‐decomposable “skin‐friendly” epidermal electronic devices fabricated on flexible, stretchable, and degradable protein‐based substrates are reported. Strong adhesion and easy detachment are achieved concurrently through an environmentally benign, plasticized protein platform offering engineered mechanical properties and water‐triggered, on‐demand decomposition lifetime (transiency). Human experiments show that multidimensional physiological signals can be measured using these innovative epidermal devices consisting of electro‐ and biochemical sensing modules and analyzed for important physiological signatures using an artificial neural network. The advances provide unique, versatile capabilities and broader applications for user‐ and environmentally friendly epidermal devices.  相似文献   

13.
Tada H  Mann SE  Miaoulis IN  Wong PY 《Applied optics》1998,37(9):1579-1584
Multilayer thin-film structures in butterfly wing scales produce a colorful iridescence from reflected sunlight. Because of optical phenomena, changes in the angle of incidence of light and the viewing angle of an observer result in shifts in the color of butterfly wings. Colors ranging from green to purple, which are due to nonplanar specular reflection, can be observed on Papilio blumei iridescent scales. This refers to a phenomenon in which the curved surface patterns in the thin-film structure cause the specular component of the reflected light to be directed at various angles while affecting the spectral reflectivity at the same time by changing the optical path length through the structure. We determined the spectral reflectivities of P. blumei iridescent scales numerically by using models of a butterfly scale microstructure and experimentally by using a microscale-reflectance spectrometer. The numerical models accurately predict the shifts in spectral reflectivity observed experimentally.  相似文献   

14.
The rapid development of wearable electronics requires a revolution of power accessories regarding flexibility and energy density. The Li–CO2 battery was recently proposed as a novel and promising candidate for next‐generation energy‐storage systems. However, the current Li–CO2 batteries usually suffer from the difficulties of poor stability, low energy efficiency, and leakage of liquid electrolyte, and few flexible Li–CO2 batteries for wearable electronics have been reported so far. Herein, a quasi‐solid‐state flexible fiber‐shaped Li–CO2 battery with low overpotential and high energy efficiency, by employing ultrafine Mo2C nanoparticles anchored on a carbon nanotube (CNT) cloth freestanding hybrid film as the cathode, is demonstrated. Due to the synergistic effects of the CNT substrate and Mo2C catalyst, it achieves a low charge potential below 3.4 V, a high energy efficiency of ≈80%, and can be reversibly discharged and charged for 40 cycles. Experimental results and theoretical simulation show that the intermediate discharge product Li2C2O4 stabilized by Mo2C via coordinative electrons transfer should be responsible for the reduction of overpotential. The as‐fabricated quasi‐solid‐state flexible fiber‐shaped Li–CO2 battery can also keep working normally even under various deformation conditions, giving it great potential of becoming an advanced energy accessory for wearable electronics.  相似文献   

15.
When using the bottom‐up approach with anisotropic building‐blocks, an important goal is to find simple methods to elaborate nanocomposite materials with a truly macroscopic anisotropy. Here, micrometer size colloidal mesoporous particles with a highly anisotropic rod‐like shape (aspect ratio ≈ 10) have been fabricated from silica (SiO2) and iron oxide (Fe2O3). When dispersed in a solvent, these particles can be easily oriented using a magnetic field (≈200 mT). A macroscopic orientation of the particles is achieved, with their long axis parallel to the field, due to the shape anisotropy of the magnetic component of the particles. The iron oxide nanocrystals are confined inside the porosity and they form columns in the nanochannels. Two different polymorphs of Fe2O3 iron oxide have been stabilized, the superparamagnetic γ‐phase and the rarest multiferroic ε‐phase. The phase transformation between these two polymorphs occurs around 900 °C. Because growth occurs under confinement, a preferred crystallographic orientation of iron oxide is obtained, and structural relationships between the two polymorphs are revealed. These findings open completely new possibilities for the design of macroscopically oriented mesoporous nanocomposites, using such strongly anisotropic Fe2O3/silica particles. Moreover, in the case of the ε‐phase, nanocomposites with original anisotropic magnetic properties are in view.  相似文献   

16.
Currently, the limitations of conventional methods for fabricating metamaterials composed of well‐aligned nanoscale inclusions either lack the necessary freedom to tune the structural geometry or are difficult for large‐area synthesis. In this Communication, the authors propose a fabrication route to create well‐ordered silver nano forest/ceramic composite single‐layer or multi‐layer vertically stacked structures, as a distinctive approach to make large‐area nanoscale metamaterials. To take advantage of direct growth, the authors fabricate single‐layer nanocomposite films with a well‐defined sub‐5 nm interwire gap and an average nanowire diameter of ≈3 nm. Further, artificially constructed multilayer metamaterial films are easily fabricated by vertical integration of different single‐layer metamaterial films. Based upon the thermodynamics as well as thin film growth dynamics theory, the growth mechanism is presented to elucidate the formation of such structure. Intriguing steady and transient optical properties in these assemblies are demonstrated, owing to their nanoscale structural anisotropy. The studies suggest that the self‐organized nanocomposites provide an extensible material platform to manipulate optical response in the region of sub‐5 nm scale.  相似文献   

17.
Anti‐icing abilities are achieved on surfaces of micropillar arrays with nanohairs that are fabricated by methods of soft replication and crystal growth, i.e., different micropillar arrays with the similar nanohairs, different nanohairs with the same micropillar arrays. It is demonstrated that an optimal micropillar array with nanohairs contributes an excellent anti‐icing or antifogging property at low temperature below zero. As a result, the longest icing delay time is achieved effectively up to ≈9839 s at −10 °C on the optimal surface. As for the optimal surface in humidity, the condensed droplets merge into each other, and meanwhile jump off easily. Accordingly, a largest dry area is up to ≈90.5% at −5 °C in ≈1020 s after breeze action. It is attributed to the stability of less liquid–solid fraction on an optimal surface under low temperature, in addition to cooperation between micropillar arrays and nanohairs in sizes. This finding provides an insight into the design of structure size on micro–nanostructured surface for anti‐icing/antifogging ability effectively, which can be extended into the applications in some surfaces of systems, e.g., microdevices worked in cold or humid environment.  相似文献   

18.
Nanolattice structure fabricated by two‐photon lithography (TPL) is a coupling of size‐dependent mechanical properties at micro/nano‐scale with structural geometry responses in wide applications of scalable micro/nano‐manufacturing. In this work, three‐dimensional (3D) polymeric nanolattices are initially fabricated using TPL, then conformably coated with an 80 nm thick high‐entropy alloy (HEA) thin film (CoCrFeNiAl0.3) via physical vapor deposition (PVD). 3D atomic‐probe tomography (APT) reveals the homogeneous element distribution in the synthesized HEA film deposited on the substrate. Mechanical properties of the obtained composite architectures are investigated via in situ scanning electron microscope (SEM) compression test, as well as finite element method (FEM) at the relevant length scales. The presented HEA‐coated nanolattice encouragingly not only exhibits superior compressive specific strength of ≈0.032 MPa kg?1 m3 with density well below 1000 kg m?3, but also shows good compression ductility due to its composite nature. This concept of combining HEA with polymer lattice structures demonstrates the potential of fabricating novel architected metamaterials with tunable mechanical properties.
  相似文献   

19.
Functionally graded carbon nanotube (CNT)‐reinforced aluminum (Al) matrix composites have been successfully fabricated by a powder metallurgy route. The gradient layers containing different amounts of CNT additions showed different microstructures and hardness. Each layer demonstrated good adhesion, with no serious pores or microcracks. We controlled the characteristics of the bulk composite by the efficient design of each CNT gradient layer. The functionally graded material concept offers a feasible approach to fabricating Al‐CNT nanocomposites.  相似文献   

20.
We have successfully fabricated nanometer-scale carbon nanotube field effect transistors (CNT FETs) on a flexible and transparent substrate by electron-beam lithography. The measured current-voltage data show good hole conduction FET characteristics, and the on/off ratio of the current is more than 10(2). The conductance (as well as current) systematically decreases with the increase of the strain, suggesting that the bending of the substrate still affects the deformation condition of the short channel CNT FETs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号