首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
2.
3.
Considerable efforts are devoted to relieve the critical lithium dendritic and volume change problems in the lithium metal anode. Constructing uniform Li+ distribution and lithium “host” are shown to be the most promising strategies to drive practical lithium metal anode development. Herein, a uniform Li nucleation/growth behavior in a confined nanospace is verified by constructing vertical graphene on a 3D commercial copper mesh. The difference of solid‐electrolyte interphase (SEI) composition and lithium growth behavior in the confined nanospace is further demonstrated by in‐depth X‐ray photoelectron spectrometer (XPS) and line‐scan energy dispersive X‐ray spectroscopic (EDS) methods. As a result, a high Columbic efficiency of 97% beyond 250 cycles at a current density of 2 mA cm?2 and a prolonged lifespan of symmetrical cell (500 cycles at 5 mA cm?2) can be easily achieved. More meaningfully, the solid‐state lithium metal cell paired with the composite lithium anode and LiNi0.5Co0.2Mn0.3O2 (NCM) as the cathode also demonstrate reduced polarization and extended cycle. The present confined nanospace–derived hybrid anode can further promote the development of future all solid‐state lithium metal batteries.  相似文献   

4.
High‐energy storage devices are in demand for the rapid development of modern society. Until now, many kinds of energy storage devices, such as lithium‐ion batteries (LIBs), sodium‐ion batteries (NIBs), and so on, have been developed in the past 30 years. However, most of the commercially exploited and studied active electrode materials of these energy storage devices possess a single phase with low reversible capacity or unsatisfied cycle stability. Continuous and extensive research efforts are made to develop alternative materials with a higher specific energy density and long cycle life by element doping or surface modification. A novel strategy of forming composite‐structure electrode materials by introducing structure units has attracted great attention in recent years. Herein, based on previous publications on these composite‐structure materials, some important scientific points focusing on the design of composite‐structure materials for better electrochemical performances reveal the distinction of composite structures based on average and local structure analysis methods, and an understanding of the relationship between these interior composite structures and their electrochemical performances is discussed thoroughly. The lithiation/delithiation mechanism and the remaining challenges and perspectives for composite‐structure electrode materials are also elaborated.  相似文献   

5.
Constructing a 3D composite Li metal anode (LMA) along with the engineering of artificial solid electrolyte interphase (SEI) is a promising strategy for achieving dendrite-free Li deposition and high cycling stability. The nanostructure of artificial SEI is closely related to the performance of the LMA. Herein, the self-grown process and morphology of in situ formed Li2S during lithiation of CuxS is studied systematically, and a large-sized sheet-like Li2S layer as an artificial SEI is in situ generated on the inner surface of a 3D continuous porous Cu skeleton (3DCu@Li2S-S). The sheet-like Li2S layer with few interfacial pitfalls (Cu/Li2S heterogeneous interface) possesses enhanced diffusion of Li ions. And the continuous porous structure provides transport channels for lithium-ion transport. As a result, the 3DCu@Li2S-S presents a high Coulombic efficiency (99.3%), long cycle life (500 cycles), and high-rate performance (10 mA cm−2). Furthermore, Li/3DCu@Li2S anode fabricated by thermal infusion method inherits the synergistic advantages of sheet-like Li2S and continuous porous structure. The Li/3DCu@Li2S anode shows significantly enhanced cycling life in both liquid and solid electrolytes. This work provides a new concept to design artificial SEI for LMA with high safe and high performance.  相似文献   

6.
Metal molybdates nanostructures hold great promise as high‐performance electrode materials for next‐generation lithium‐ion batteries. In this work, the facial design and synthesis of monodisperse FeMoO4 nanocubes with the edge lengths of about 100 nm have been successfully prepared and present as a novel anode material for highly efficient and reversible lithium storage. Well‐defined single‐crystalline FeMoO4 with high uniformity are first obtained as nanosheets and then self‐aggregated into nanocubes. The morphology of the product is largely controlled by the experimental parameters, such as the reaction temperature and time, the ratio of reactant, the solution viscosity, etc. The molybdate nanostructure would effectively promote the insertion of lithium ions and withstand volume variation upon prolonged charge/discharge cycling. As a result, the FeMoO4 nanocubes exhibit high reversible capacities of 926 mAh g−1 after 80 cycles at a current density of 100 mA g−1 and remarkable rate performance, which indicate that the FeMoO4 nanocubes are promising materials for high‐power lithium‐ion battery applications.  相似文献   

7.
8.
The Li–O2 battery (LOB) is considered as a promising next‐generation energy storage device because of its high theoretic specific energy. To make a practical rechargeable LOB, it is necessary to ensure the stability of the Li anode in an oxygen atmosphere, which is extremely challenging. In this work, an effective Li‐anode protection strategy is reported by using boric acid (BA) as a solid electrolyte interface (SEI) forming additive. With the assistance of BA, a continuous and compact SEI film is formed on the Li‐metal surface in an oxygen atmosphere, which can significantly reduce unwanted side reactions and suppress the growth of Li dendrites. Such an SEI film mainly consists of nanocrystalline lithium borates connected with amorphous borates, carbonates, fluorides, and some organic compounds. It is ionically conductive and mechanically stronger than conventional SEI layer in common Li‐metal‐based batteries. With these benefits, the cycle life of LOB is elongated more than sixfold.  相似文献   

9.
To achieve a high reversibility and long cycle life for Li–O2 battery system, the stable tissue‐directed/reinforced bifunctional separator/protection film (TBF) is in situ fabricated on the surface of metallic lithium anode. It is shown that a Li–O2 cell composed of the TBF‐modified lithium anodes exhibits an excellent anodic reversibility (300 cycles) and effectively improved cathodic long lifetime (106 cycles). The improvement is attributed to the ability of the TBF, which has chemical, electrochemical, and mechanical stability, to effectively prevent direct contact between the surface of the lithium anode and the highly reactive reduced oxygen species (Li2O2 or its intermediate LiO2) in cell. It is believed that the protection strategy describes here can be easily extended to other next‐generation high energy density batteries using metal as anode including Li–S and Na–O2 batteries.  相似文献   

10.
11.
Radio Free Europe used balloons to drop leaflets in an attempt to supplement radio with printed words in the 1950s—a historical moment when closing borders, censoring the press, jamming foreign radios, tapping telephone lines, and tracking letters from abroad created an almost hermetically sealed space without many means for exchanging information across the Iron Curtain. This article traces how distorted and limited information shaped Cold War propaganda and practices of information‐gathering. The article further examines unpredictable environmental factors that were transformed into persuasive political rhetoric. A comparative analysis of communist media shows similarities of imagination in a visual propaganda campaign across five communist countries. Fantasies evolved into an object of public interest when propaganda strategies embraced a language of facts.  相似文献   

12.
Go slow” dialysis is a gentle, intermittent hemodialysis therapy for acute renal failure patients, with advantages compared to slow, continuous therapies. It employs a recirculating closed dialysate circuit. A two-pool urea kinetic model is elaborated to determine kinetic parameters from blood and dialysate concentrations. This will allow quantification of the therapy. Variable clearance is included to accurately describe the kinetic process. The model is tested in an acute renal failure patient. Solute removals, as determined from direct dialysis quantification and by the model, are comparable. Variable clearance is not required to determine the kinetic parameters, because the constant mean clearance delivers equal results. The dialysis dose, as defined, allows comparison with chronic renal therapies. It requires solute removal determined from dialysate sampling and time-averaged concentration (TAC) from the urea kinetic modeling. In the test patient, dialysis dose is lower compared to standard thrice-weekly therapies because of its lower efficiency and higher TAC, a result of his highly catabolic state.  相似文献   

13.
14.
15.
Currently, metal‐organic frameworks (MOFs) are intensively studied as active materials for electrochemical energy storage applications due to their tunable structure and exceptional porosities. Among them, water stable pillared MOFs with dual ligands have been reported to exhibit high supercapacitor (SC) performance. Herein, the “One‐for‐All” strategy is applied to synthesize both positive and negative electrodes of a hybrid SC (HSC) from a single pillared MOF. Specifically, Ni‐DMOF‐TM ([Ni(TMBDC)(DABCO)0.5], TMBDC: 2,3,5,6‐tetramethyl‐1,4‐benzenedicarboxylic acid, DABCO: 1,4‐diazabicyclo[2.2.2]‐octane) nanorods are directly grown on carbon fiber paper (CFP) (denoted as CFP@TM‐nanorods) with the help of triethylamine and function as the positive electrode of HSC under alkaline electrolyte. Meanwhile, calcinated N‐doped hierarchical porous carbon nanorods (CFP@TM‐NPCs) are produced and utilized as the negative counter‐electrode from a one‐step heat treatment of CFP@TM‐nanorods. After assembling these two electrodes together to make a hybrid device, the TM‐nanorods//TM‐NPCs exhibit a wide voltage window of 1.5 V with a high sloping discharge plateau between 1‐1.2 V, indicating its great potential for practical applications. This as‐described “One‐for‐All” strategy is widely applicable and highly reproducible in producing MOF‐based electrode materials for HSC applications, which shortens the gap between experimental synthesis and practical application of MOFs in fast energy storage.  相似文献   

16.
17.
Ceria–samaria (CeO2–Sm2O3) is one of the most interesting fluorite oxides since its ionic conductivity is higher than that of yttria-stabilized zirconia in air. However, these CeO2 -based oxides are partially reduced and develop electronic conductivity under fuel cell operating conditions. In their application to the SOFC system, their current densities and power densities are not at a satisfactory level. For the development of high-performance CeO2 electrolytes, it is important that the fluorite lattice of CeO2-based oxide be improved from the viewpoint of crystallography. In this study, it is assumed that the reduction of Ce4+ in the fluorite lattice was inhibited by expansion of the CeO2 lattice. In order to investigate the contribution of the expanded CeO2 lattice to reduction resistance, CeO2–Sm2O3 solid solution, calcia-doped CeO2–Sm2O3 solid solution, and a small amount of alkali element-doped CeO2–Sm2O3 -based oxide were prepared for comparison. It was found that the calcia or a small amount of alkali element-doped CeO2 solid solution enhanced the oxide ionic conductivity. The power density of the latter showed a high value at 800°C. It is concluded that the improved fuel cell performance can be attributed to the good reduction resistance in the fuel cell atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号