首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Silicon and other inorganic semiconductor nanowires (NWs) have been extensively investigated in the last two decades for constructing high-performance nanoelectronics, sensors, and optoelectronics. For many of these applications, these tiny building blocks have to be integrated into the existing planar electronic platform, where precise location, orientation, and layout controls are indispensable. In the advent of More-than-Moore's era, there are also emerging demands for a programmable growth engineering of the geometry, composition, and line-shape of NWs on planar or out-of-plane 3D sidewall surfaces. Here, the critical technologies established for synthesis, transferring, and assembly of NWs upon planar surface are examined; then, the recent progress of in-plane growth of horizontal NWs directly upon crystalline or patterned substrates, constrained by using nanochannels, an epitaxial interface, or amorphous thin film precursors is discussed. Finally, the unique capabilities of planar growth of NWs in achieving precise guided growth control, programmable geometry, composition, and line-shape engineering are reviewed, followed by their latest device applications in building high-performance field-effect transistors, photodetectors, stretchable electronics, and 3D stacked-channel integration.  相似文献   

2.
Modern microelectronic systems and their components are essentially 3D devices that have become smaller and lighter in order to improve performance and reduce costs. To maintain this trend, novel materials and technologies are required that provide more structural freedom in 3D over conventional microelectronics, as well as easier parallel fabrication routes while maintaining compatability with existing manufacturing methods. Self-assembly of initially planar membranes into complex 3D architectures offers a wealth of opportunities to accommodate thin-film microelectronic functionalities in devices and systems possessing improved performance and higher integration density. Existing work in this field, with a focus on components constructed from 3D self-assembly, is reviewed, and an outlook on their application potential in tomorrow's microelectronics world is provided.  相似文献   

3.
Compared to their 2D counterparts, 3D micro/nanostructures show larger degrees of freedom and richer functionalities; thus, they have attracted increasing attention in the past decades. Moreover, extensive applications of 3D micro/nanostructures are demonstrated in the fields of mechanics, biomedicine, optics, etc., with great advantages. However, the mainstream micro/nanofabrication technologies are planar ones; therefore, they cannot be used directly for the construction of 3D micro/nanostructures, making 3D fabrication at the micro/nanoscale a great challenge. A promising strategy to overcome this is to combine the state‐of‐the‐art planar fabrication techniques with the folding method to produce 3D structures. In this strategy, 2D components can be easily produced by traditional planar techniques, and then, 3D structures are constructed by folding each 2D component to specific orientations. In this way, not only will the advantages of existing planar techniques, such as high precision, programmable patterning, and mass production, be preserved, but the fabrication capability will also be greatly expanded without complex and expensive equipment modification/development. The goal here is to highlight the recent progress of the folding method from the perspective of principles, techniques, and applications, as well as to discuss the existing challenges and future prospectives.  相似文献   

4.
The rapid advancements of wearable electronics have caused a paradigm shift in consumer electronics, and the emerging development of stretchable electronics opens a new spectrum of applications for electronic systems. Playing a critical role as the power sources for independent electronic systems, energy harvesters with high flexibility or stretchability have been the focus of research efforts over the past decade. A large number of the flexible energy harvesters developed can only operate at very low strain level (≈0.1%), and their limited flexibility impedes their application in wearable or stretchable electronics. Here, the development of highly flexible and stretchable (stretchability >15% strain) energy harvesters is reviewed with emphasis on strategies of materials synthesis, device fabrication, and integration schemes for enhanced flexibility and stretchability. Due to their particular potential applications in wearable and stretchable electronics, energy‐harvesting devices based on piezoelectricity, triboelectricity, thermoelectricity, and dielectric elastomers have been largely developed and the progress is summarized. The challenges and opportunities of assembly and integration of energy harvesters into stretchable systems are also discussed.  相似文献   

5.
The continuous progress of printing technologies over the past 20 years has fueled the development of a plethora of applications in materials sciences, flexible electronics, and biotechnologies. More recently, printing methodologies have started up to explore the world of Artificial Biology, offering new paradigms in the direct assembly of Artificial Biosystems (small condensates, compartments, networks, tissues, and organs) by mimicking the result of the evolution of living systems and also by redesigning natural biological systems, taking inspiration from them. This recent progress is reported in terms of a new field here defined as Printing Biology, resulting from the intersection between the field of printing and the bottom up Synthetic Biology. Printing Biology explores new approaches for the reconfigurable assembly of designed life‐like or life‐inspired structures. This work presents this emerging field, highlighting its main features, i.e., printing methodologies (from 2D to 3D), molecular ink properties, deposition mechanisms, and finally the applications and future challenges. Printing Biology is expected to show a growing impact on the development of biotechnology and life‐inspired fabrication.  相似文献   

6.
Advances in material science and nanotechnology have fostered the miniaturization of devices. Over the past two decades, the form-factor of these devices has evolved from 3D rigid, volumetric devices through 2D film-based flexible electronics, finally to 1D fiber electronics (fibertronics). In this regard, fibertronic strategies toward wearable applications (e.g., electronic textiles (e-textiles)) have attracted considerable attention thanks to their capability to impart various functions into textiles with retaining textiles' intrinsic properties as well as imperceptible irritation by foreign matters. In recent years, extensive research has been carried out to develop various functional devices in the fiber form. Among various features, lighting and display features are the highly desirable functions in wearable electronics. This article discusses the recent progress of materials, architectural designs, and new fabrication technologies of fiber-shaped lighting devices and the current challenges corresponding to each device's operating mechanism. Moreover, opportunities and applications that the revolutionary convergence between the state-of-the-art fibertronic technology and age-long textile industry will bring in the future are also discussed.  相似文献   

7.
1D supercapacitors (SCs) have emerged as promising candidates to power emerging electronics in recent years because of their unique advantages in energy storage and mechanical flexibility. There are four main research fronts in the development of 1D SCs: 1) enhancing mechanical characteristics, 2) achieving superior electrochemical performance, 3) enabling multiple device integration, and 4) demonstrating multifunctionality. Here, a brief history of 1D SCs is presented and significant research achievements regarding the four fronts identified as the main pillars of the development of 1D SCs are highlighted. The current challenges of the fabrication and utilization of 1D SCs are critically examined and potential solutions are analyzed. Plus, the performance inconsistencies arising from the improper use and extreme diversity of performance evaluation and reporting methods are highlighted. Beyond, perspectives on future efforts are provided and goals regarding the four research fronts are set, to further push 1D SCs toward practical applications. The development of 1D SCs is summarized here, with existing obstacles diagnosed, corresponding solutions proposed, and future directions indicated accordingly.  相似文献   

8.
Modern electronic devices are moving toward miniaturization and integration with an emerging focus on wearable electronics. Due to their close contact with the human body, wearable electronics have new requirements including low weight, small size, and flexibility. Conventional 3D and 2D electronic devices fail to efficiently meet these requirements due to their rigidity and bulkiness. Hence, a new family of 1D fiber-shaped electronic devices including energy-harvesting devices, energy-storage devices, light-emitting devices, and sensing devices has risen to the challenge due to their small diameter, lightweight, flexibility, and weavability into soft textile electronics. The application challenges faced by fiber and textile electronics from single fiber-shaped devices to continuously scalable fabrication, to encapsulation and testing, and to application mode exploration, are discussed. The evolutionary trends of fiber and textile electronics are then summarized. Finally, future directions required to boost their commercialization are highlighted.  相似文献   

9.
Wearable technologies are driving current research efforts to self‐powered electronics, for which novel high‐performance materials such as graphene and low‐cost fabrication processes are highly sought.The integration of high‐quality graphene films obtained from scalable water processing approaches in emerging applications for flexible and wearable electronics is demonstrated. A novel method for the assembly of shear exfoliated graphene in water, comprising a direct transfer process assisted by evaporation of isopropyl alcohol is developed. It is shown that graphene films can be easily transferred to any target substrate such as paper, flexible polymeric sheets and fibers, glass, and Si substrates. By combining graphene as the electrode and poly(dimethylsiloxane) as the active layer, a flexible and semi‐transparent triboelectric nanogenerator (TENG) is demonstrated for harvesting energy. The results constitute a new step toward the realization of energy harvesting devices that could be integrated with a wide range of wearable and flexible technologies, and opens new possibilities for the use of TENGs in many applications such as electronic skin and wearable electronics.  相似文献   

10.
It has been more than three decades since stereolithography began to emerge in various forms of additive manufacturing and 3D printing. Today these technologies are proliferating worldwide in various forms of advanced manufacturing. The largest segment of the 3D printing market today involves various polymer component fabrications, particularly complex structures not attainable by other manufacturing methods.Conventional printer head systems have also been adapted to selectively print various speciated human cells and special molecules in attempts to construct human organs, beginning with skin and various tissue patches. These efforts are discussed along with metal and alloy fabrication of a variety of implant and bone replacement components by creating powder layers, which are selectively melted into complex forms(such as foams and other open-cellular structures) using laser and electron beams directed by CAD software. Efforts to create a "living implant" by bone ingrowth and eventual vascularization within these implants will be discussed briefly. Novel printer heads for direct metal droplet deposition as in other 3D printing systems are briefly described since these concepts will allow for the eventual fabrication of very large and complex products, including automotive and aerospace structures and components.  相似文献   

11.
Nanofibers/nanowires usually exhibit exceptionally low flexural rigidities and remarkable tolerance against mechanical bending, showing superior advantages in flexible electronics applications. Electrospinning is regarded as a powerful process for this 1D nanostructure; however, it can only be able to produce chaotic fibers that are incompatible with the well‐patterned microstructures in flexible electronics. Electro‐hydrodynamic (EHD) direct‐writing technology enables large‐scale deposition of highly aligned nanofibers in an additive, noncontact, real‐time adjustment, and individual control manner on rigid or flexible, planar or curved substrates, making it rather attractive in the fabrication of flexible electronics. In this Review, the ground‐breaking research progress in the field of EHD direct‐writing technology is summarized, including a brief chronology of EHD direct‐writing techniques, basic principles and alignment strategies, and applications in flexible electronics. Finally, future prospects are suggested to advance flexible electronics based on orderly arranged EHD direct‐written fibers. This technology overcomes the limitations of the resolution of fabrication and viscosity of ink of conventional inkjet printing, and represents major advances in manufacturing of flexible electronics.  相似文献   

12.
Flexible electronics have witnessed exciting progress in academia over the past decade, but most of the research outcomes have yet to be translated into products or gain much market share. For mass production and commercialization, industrial adoption of newly developed functional materials and fabrication techniques is a prerequisite. However, due to the disparate features of academic laboratories and industrial plants, translating materials and manufacturing technologies from labs to fabs is notoriously difficult. Therefore, herein, key challenges in the materials manufacturing of flexible electronics are identified and discussed for its lab-to-fab translation, along the four stages in product manufacturing: design, materials supply, processing, and integration. Perspectives on industry-oriented strategies to overcome some of these obstacles are also proposed. Priorities for action are outlined, including standardization, iteration between basic and applied research, and adoption of smart manufacturing. With concerted efforts from academia and industry, flexible electronics will bring a bigger impact to society as promised.  相似文献   

13.
Advances in materials science and the desire for next‐generation electronics have driven the development of stretchable and transparent electronics in the past decade. Novel applications, such as smart contact lenses and wearable sensors, have been introduced with stretchable and transparent form factors, requiring a deeper and wider exploration of materials and fabrication processes. In this regard, many research efforts have been dedicated to the development of mechanically stretchable, optically transparent materials and devices. Recent advances in stretchable and transparent electronics are discussed herein, with special emphasis on the development of stretchable and transparent materials, including substrates and electrodes. Several representative examples of applications enabled by stretchable and transparent electronics are presented, including sensors, smart contact lenses, heaters, and neural interfaces. The current challenges and opportunities for each type of stretchable and transparent electronics are also discussed.  相似文献   

14.
Flexible sensors that efficiently detect various stimuli relevant to specific environmental or biological species have been extensively studied due to their great potential for the Internet of Things and wearable electronics applications. The application of flexible and stretchable electronics to device‐engineering technologies has enabled the fabrication of slender, lightweight, stretchable, and foldable sensors. Here, recent studies on flexible sensors for biological analytes, ions, light, and pH are outlined. In addition, contemporary studies on device structure, materials, and fabrication methods for flexible sensors are discussed, and a market overview is provided. The conclusion presents challenges and perspectives in this field.  相似文献   

15.
A batch‐assembly technique for forming 3D electronics on shape memory polymer substrates is demonstrated and is used to create dense, highly sensitive, multimodal arrays of electronic whiskers. Directed air flow at temperatures above the substrate's glass transition temperature transforms planar photolithographically defined resistive sensors from 2D precursors into shape‐tunable, deterministic 3D assemblies. Reversible 3D assembly and flattening is achieved by exploiting the shape memory properties of the substrate, enabling context‐driven shape reconfiguration to isolate/enhance specific sensing modes. In particular, measurement schemes and device configurations are introduced that allow for the sensing of temperature, stiffness, contact force, proximity, and surface texture and roughness. The assemblies offer highly spatiotemporally resolved, wide‐range measurements of surface topology (50 nm to 500 µm), material stiffness (200 kPa to 7.5 GPa), and temperature (0–100 °C), with response times of <250 µs. The development of a scalable process for 3D assembly of reconfigurable electronic sensors, as well as the large breadth and sensitivity of complex sensing modes demonstrated, has applications in the growing fields of 3D assembly, electronic skin, and human–machine interfaces.  相似文献   

16.
Metamaterials are artificial materials that--unlike natural substances--enable magnetism to be achieved at optical frequencies. The vast majority of photonic metamaterials has been fabricated by electron-beam lithography and evaporation of metal films, both of which are well-established two-dimensional (2D) technologies. Although stacking of three or four functional layers made using these methods has been reported, a truly 3D fabrication approach would be preferable for 3D photonic metamaterials. Here, we report first steps in this direction by using a combination of direct laser writing and silver chemical vapour deposition--the 3D analogues of electron-beam lithography and evaporation, respectively. The optical characterization of a planar test structure composed of elongated split-ring resonators is in good agreement with theory. Retrieval of the effective optical parameters reveals the importance of bi-anisotropy. Once suitable theoretical blueprints are available, our fabrication approach will enable rapid prototyping of truly 3D photonic metamaterials.  相似文献   

17.
Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large-area printing. Considerable efforts have been dedicated to the fabrication of SOS-based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS-based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS-based wearable electronics are also discussed.  相似文献   

18.
The development of methods for the 3D printing of multifunctional devices could impact areas ranging from wearable electronics and energy harvesting devices to smart prosthetics and human–machine interfaces. Recently, the development of stretchable electronic devices has accelerated, concomitant with advances in functional materials and fabrication processes. In particular, novel strategies have been developed to enable the intimate biointegration of wearable electronic devices with human skin in ways that bypass the mechanical and thermal restrictions of traditional microfabrication technologies. Here, a multimaterial, multiscale, and multifunctional 3D printing approach is employed to fabricate 3D tactile sensors under ambient conditions conformally onto freeform surfaces. The customized sensor is demonstrated with the capabilities of detecting and differentiating human movements, including pulse monitoring and finger motions. The custom 3D printing of functional materials and devices opens new routes for the biointegration of various sensors in wearable electronics systems, and toward advanced bionic skin applications.  相似文献   

19.
Thermal energy harvesting from the ambient environment through thermoelectric nanogenerators (TEGs) is an ideal way to realize self‐powered operation of electronics, and even relieve the energy crisis and environmental degradation. As one of the most significant energy‐related technologies, TEGs have exhibited excellent thermoelectric performance and played an increasingly important role in harvesting and converting heat into electric energy, gradually becoming one of the hot research fields. Here, the development of TEGs including materials optimization, structural designs, and potential applications, even the opportunities, challenges, and the future development direction, is analyzed and summarized. Materials optimization and structural designs of flexibility for potential applications in wearable electronics are systematically discussed. With the development of flexible and wearable electronic equipment, flexible TEGs show increasingly great application prospects in artificial intelligence, self‐powered sensing systems, and other fields in the future.  相似文献   

20.
The rapid development and further modularization of miniaturized and self‐powered electronic systems have substantially stimulated the urgent demand for microscale electrochemical energy storage devices, e.g., microbatteries (MBs) and micro‐supercapacitors (MSCs). Recently, planar MBs and MSCs, composed of isolated thin‐film microelectrodes with extremely short ionic diffusion path and free of separator on a single substrate, have become particularly attractive because they can be directly integrated with microelectronic devices on the same side of one single substrate to act as a standalone microsized power source or complement miniaturized energy‐harvesting units. The development of and recent advances in planar MBs and MSCs from the fundamentals and design principle to the fabrication methods of 2D and 3D planar microdevices in both in‐plane and stacked geometries are highlighted. Additonally, a comprehensive analysis of the primary aspects that eventually affect the performance metrics of microscale energy storage devices, such as electrode materials, electrolyte, device architecture, and microfabrication techniques are presented. The technical challenges and prospective solutions for high‐energy‐density planar MBs and MSCs with multifunctionalities are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号