首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The advancements in nanotechnology have created multifunctional nanomaterials aimed at enhancing diagnostic accuracy and treatment efficacy for cancer. However, the ability to target deep‐seated tumors remains one of the most critical challenges for certain nanomedicine applications. To this end, X‐ray‐excited theranostic techniques provide a means of overcoming the limits of light penetration and tissue attenuation. Herein, a comprehensive overview of the recent advances in nanotechnology‐enhanced X‐ray‐excited imaging and therapeutic methodologies is presented, with an emphasis on the design of multifunctional nanomaterials for contrast‐enhanced computed tomography (CT) imaging, X‐ray‐excited optical luminescence (XEOL) imaging, and X‐ray‐excited multimodal synchronous/synergistic therapy. The latter is based on the concurrent use of radiotherapy with chemotherapy, gas therapy, photodynamic therapy, or immunotherapy. Moreover, the featured biomedical applications of X‐ray‐excited deep theranostics are discussed to highlight the advantages of X‐ray in high‐sensitivity detection and efficient elimination of malignant tumors. Finally, key issues and technical challenges associated with this deep theranostic technology are identified, with the intention of advancing its translation into the clinic.  相似文献   

3.
The need for better imaging assisted cancer therapy calls for new biocompatible agents with excellent imaging and therapeutic capabilities. This study successfully fabricates albumin‐cooperated human serum albumin (HSA)‐GGD‐ICG nanoparticles (NPs), which are comprised of a magnetic resonance (MR) contrast agent, glycyrrhetinic‐acid‐modified gadolinium (III)‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (GGD), and a fluorescence (FL) dye, indocyanine green (ICG), for multimodal MR/FL imaging assisted cancer therapy. These HSA‐GGD‐ICG NPs with excellent biocompatibility are stable under physiological conditions, and exhibit enhanced T1 contrast capability and improved fluorescence imaging capacity. In vitro experiments reveal an apparent effect of the NPs in killing tumor cells under low laser irradiation, due to the enhanced photothermal conversion efficiency (≈85.1%). Importantly, multimodal MR/FL imaging clearly shows the in vivo behaviors and the efficiency of tumor accumulation of HSA‐GGD‐ICG NPs, as confirmed by a pharmacokinetic study. With the guidance of multimodal imaging, photothermal therapy is subsequently conducted, which demonstrates again high photothermal conversion capability for eliminating tumors without relapse. Notably, real‐time monitoring of tumor ablation for prognosis and therapy evaluation is also achieved by MR imaging. This strategy of constructing nanoplatforms through albumin‐mediated methods is both convenient and efficient, which would enlighten the design of multimodal imaging assisted cancer therapy for potential clinical translation.  相似文献   

4.
Minimally invasive therapies avoiding surgical complexities evoke great interest in developing injectable biomedical devices. Herein, a versatile approach is reported for engineering injectable and biomimetic nanofiber microspheres (NMs) with tunable sizes, predesigned structures, and desired compositions via gas bubble–mediated coaxial electrospraying. The sizes and structures of NMs are controlled by adjusting processing parameters including air flow rate, applied voltage, distance, and spinneret configuration in the coaxial setup. Importantly, unlike the self‐assembly method, this technique can be used to fabricate NMs from any material feasible for electrospinning or other nanofiber fabrication techniques. To demonstrate the versatility, open porous NMs are successfully fabricated that consist of various short nanofibers made of poly(ε‐caprolactone), poly(lactic‐co‐glycolic acid), gelatin, methacrylated gelatin, bioglass, and magneto‐responsive polymer composites. Open porous NMs support human neural progenitor cell growth in 3D with a larger number and more neurites than nonporous NMs. Additionally, highly open porous NMs show faster cell infiltration and host tissue integration than nonporous NMs after subcutaneous injection to rats. Such a novel class of NMs holds great potential for many biomedical applications such as tissue filling, cell and drug delivery, and minimally invasive tissue regeneration.  相似文献   

5.
6.
Multimodal imaging guided synergistic therapy promises more accurate diagnosis than any single imaging modality, and higher therapeutic efficiency than any single one or their simple “mechanical” combination. Herein, we report a dual‐stimuli responsive nanotheranostic based on a hierarchical nanoplatform, composed of mesoporous silica‐coated gold nanorods (GNR@SiO2), Indocyanine Green (ICG), and 5‐fluorouracil (5‐FU), for in vivo multimodal imaging guided synergistic therapy. The 5‐FU loaded ICG‐conjugated silica‐coated gold nanorods (GNR@SiO2‐5‐FU‐ICG) was able to response specifically to the two stimuli of pH change and near‐infrared (NIR) light irradiation. Both the NIR light irradiation and acidic environment accelerated the 5‐FU release. Meanwhile, the heat generation and singlet oxygen production can be induced by GNR@SiO2‐5‐FU‐ICG upon light irradiation. Most intriguingly, the nanoplatform also promises multimodal imaging such as two‐photon luminescence, fluorescence, photoacoustic, photothermal imaging, as well as trimodal synergistic therapy such as photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy. The cancer theranostic capability of GNR@SiO2‐5‐FU‐ICG was evaluated both in vitro and in vivo. The trimodal synergistic therapy with the guidance of multimodal imaging exhibited remarkably enhanced treatment efficacy. This concept of a hierarchical nanoplatform integrates multiple diagnostic/therapeutic modalities into one platform, which can potentially be applied as personalized nanomedicine with drug delivery, diagnosis, and treatment.  相似文献   

7.
Combining immune checkpoint blockade therapy (ICBT) with other treatment modalities through nanotechnology offers an opportunity to further boost immunity for effective cancer treatment. Herein three-in-one programmed death-ligand 1 (PD-L1)-targeted nanocomposite (NC) was minimally fabricated through self-assembling photothermal agent black phosphorus nanosheet (BPN), chemotherapeutic agent Polymetformin (PolyMet), and immune checkpoint inhibitor anti-PD-L1 antibody (aPD-L1), avoiding the easy degradability of BPN through bridging the electrostatic interaction between PolyMet and BPN. The prepared aPD-L1-PolyMet/BPN NC could precisely target primary tumor through the interaction between aPD-L1 and PD-L1 based on ICBT, and the targeting efficacy was gradually reinforced due to the PD-L1 upregulation in tumor sites after photothermal therapy (PTT), ensuring positive feedback-mediated multimodal antitumor effect during continuous treatment loops. Moreover, the combinational therapy composed of photothermal immunotherapy (PIT), chemotherapy and ICBT strengthened the antitumor efficacy owing to their synergistic mechanism. Meanwhile, the generated positive feedback property during treatment displayed powerful antitumor effect, which not only inhibited primary and abscopal tumor progression, but also prevented tumor metastasis and promoted long-term tumor immune memory establishment. Therefore, this antitumor NC provided a prospective insight into the field of multimodal cancer therapy through rational and minimal design.  相似文献   

8.
Over the past 3 years, glucose oxidase (GOx) has aroused great research interest in the context of cancer treatment due to its inherent biocompatibility and biodegradability, and its unique catalytic properties against β‐d ‐glucose. GOx can effectively catalyze the oxidation of glucose into gluconic acid and hydrogen peroxide. This process depletes oxygen levels, resulting in elevated acidity, hypoxia, and oxidative stress in the tumor microenvironment. All of these changes can be readily harnessed to develop a multimodal synergistic cancer therapy by combining GOx with other therapeutic approaches. Herein, the representative studies of GOx‐instructed multimodal synergistic cancer therapy are introduced, and their synergistic mechanisms are discussed systematically. The current challenges and future prospects to advance the development of GOx‐based nanomedicines in this cutting‐edge research area are highlighted.  相似文献   

9.
Recently, the development of multifunctional theranostic nanoplatforms to realize tumor‐specific imaging and enhanced cancer therapy via responding or modulating the tumor microenvironment (TME) has attracted tremendous interests in the field of nanomedicine. Herein, tungsten disulfide (WS2) nanoflakes with their surface adsorbed with iron oxide nanoparticles (IONPs) via self‐assembly are coated with silica and then subsequently with manganese dioxide (MnO2), on to which polyethylene glycol (PEG) is attached. The obtained WS2‐IO/S@MO‐PEG appears to be highly sensitive to pH, enabling tumor pH‐responsive magnetic resonance imaging with IONPs as the pH‐inert T2 contrast probe and MnO2 as the pH‐sensitive T1 contrast probe. Meanwhile, synergistic combination tumor therapy is realized with such WS2‐IO/S@MO‐PEG, by utilizing the strong near‐infrared light and X‐ray absorbance of WS2 for photothermal therapy (PTT) and enhanced cancer radiotherapy (RT), respectively, as well as the ability of MnO2 to decompose tumor endogenous H2O2 and relieve tumor hypoxia to further overcome hypoxia‐associated radiotherapy resistance. The combination of PTT and RT with WS2‐IO/S@MO‐PEG results in a remarkable synergistic effect to destruct tumors. This work highlights the promise of developing multifunction nanocomposites for TME‐specific imaging and TME modulation, aiming at precision cancer synergistic treatment.  相似文献   

10.
A multifunctional core–satellite nanoconstruct is designed by assembling copper sulfide (CuS) nanoparticles on the surface of [89Zr]‐labeled hollow mesoporous silica nanoshells filled with porphyrin molecules, for effective cancer imaging and therapy. The hybrid nanotheranostic demonstrates three significant features: (1) simple and robust construction from biocompatible building blocks, demonstrating prolonged blood retention, enhanced tumor accumulation, and minimal long‐term systemic toxicity, (2) rationally selected functional moieties that interact together to enable simultaneous tetramodal (positron emission tomography/fluorescence/Cerenkov luminescence/Cerenkov radiation energy transfer) imaging for rapid and accurate delineation of tumors and multimodal image‐guided therapy in vivo, and (3) synergistic interaction between CuS‐mediated photothermal therapy and porphyrin‐mediated photodynamic therapy which results in complete tumor elimination within a day of treatment with no visible recurrence or side effects. Overall, this proof‐of‐concept study illustrates an efficient, generalized approach to design high‐performance core–satellite nanohybrids that can be easily tailored to combine a wide variety of imaging and therapeutic modalities for improved and personalized cancer theranostics in the future.  相似文献   

11.
The fast development of photoactivation for cancer treatment provides an efficient photo‐therapeutic strategy for cancer treatment, but traditional photodynamic or photothermal therapy suffers from the critical issue of low in vivo penetration depth of tissues. As a non‐invasive therapeutic modality, sonodynamic therapy (SDT) can break the depth barrier of photoactivation because ultrasound has an intrinsically high tissue‐penetration performance. Micro/nanoparticles can efficiently augment the SDT efficiency based on nanobiotechnology. The state‐of‐art of the representative achievements on micro/nanoparticle‐enhanced SDT is summarized, and specific functions of micro/nanoparticles for SDT are discussed, from the different viewpoints of ultrasound medicine, material science and nanobiotechnology. Emphasis is put on the relationship of structure/composition‐SDT performance of micro/nanoparticle‐based sonosensitizers. Three types of micro/nanoparticle‐augmented SDT are discussed, including organic and inorganic sonosensitizers and micro/nanoparticle‐based but sonosensitizer‐free strategies to enhance the SDT outcome. SDT‐based synergistic cancer therapy augmented by micro/nanoparticles and their biosafety are also included. Some urgent critical issues and potential developments of micro/nanoparticle‐augmented SDT for efficient cancer treatment are addressed. It is highly expected that micro/nanoparticle‐augmented SDT will be quickly developed as a new and efficient therapeutic modality which will find practical applications in cancer treatment. At the same time, fundamental disciplines regarding materials science, chemistry, medicine and nanotechnology will be advanced.  相似文献   

12.
Despite advances in cancer diagnosis and treatment, ovarian cancer remains one of the most fatal cancer types. The development of targeted nanoparticle imaging probes and therapeutics offers promising approaches for early detection and effective treatment of ovarian cancer. In this study, HER‐2 targeted magnetic iron oxide nanoparticles (IONPs) are developed by conjugating a high affinity and small size HER‐2 affibody that is labeled with a unique near infrared dye (NIR‐830) to the nanoparticles. Using a clinically relevant orthotopic human ovarian tumor xenograft model, it is shown that HER‐2 targeted IONPs are selectively delivered into both primary and disseminated ovarian tumors, enabling non‐invasive optical and MR imaging of the tumors as small as 1 mm in the peritoneal cavity. It is determined that HER‐2 targeted delivery of the IONPs is essential for specific and sensitive imaging of the HER‐2 positive tumor since we are unable to detect the imaging signal in the tumors following systemic delivery of non‐targeted IONPs into the mice bearing HER‐2 positive SKOV3 tumors. Furthermore, imaging signals and the IONPs are not detected in HER‐2 low expressing OVCAR3 tumors after systemic delivery of HER‐2 targeted‐IONPs. Since HER‐2 is expressed in a high percentage of ovarian cancers, the HER‐2 targeted dual imaging modality IONPs have potential for the development of novel targeted imaging and therapeutic nanoparticles for ovarian cancer detection, targeted drug delivery, and image‐guided therapy and surgery.  相似文献   

13.
Nanomaterial‐based pancreatic cancer treatment has received widespread attention and rapid development in the past few years. The major challenges include the poor combination of diagnosis and therapy, the difficulty in targeting therapy from the root and the unsatisfactory antitumor efficiency, which is accompanied by a great risk of relapse and metastasis. In this work, a positively charged lipid bilayer membrane is coated on reduced graphene oxide@gold nanostar (rGO@AuNS) for photoacoustic/photothermal dual‐modal imaging‐guided gene/photothermal synergistic therapy of pancreatic cancer. In addition, the cross‐linking of folic acid on the surface of rGO@AuNS‐lipid can specifically bind after recognizing folic acid receptors on the surface of cancer cells, and greatly improve the targeting ability of the nanomaterial and the performance of imaging diagnosis by receptor‐mediated endocytosis. Moreover, the photothermal and gene (targeting G12V mutant K‐Ras gene) synergistic therapy shows outstanding anticancer efficacy for pancreatic cancer tumor bearing mice, and it is noteworthy that the treatment groups have anti‐liver metastasis of pancreatic cancer.  相似文献   

14.
Developing an effective theranostic nanoplatform remains a great challenge for cancer diagnosis and treatment. Here, BiOI@Bi2S3@BSA (bovine serum albumin) semiconductor heterojunction nanoparticles (SHNPs) for triple‐combination radio/photodynamic/photothermal cancer therapy and multimodal computed tomography/photoacoustic (CT/PA) bioimaging are reported. On the one hand, SHNPs possess strong X‐ray attenuation capability since they contain high‐Z elements, and thus they are anticipated to be a very competent candidate as radio‐sensitizing materials for radiotherapy enhancement. On the other hand, as a semiconductor, the as‐prepared SHNPs offer an extra approach for reactive oxygen species generation based on electron–hole pair under the irradiation of X‐ray through the photodynamic therapy process. This X‐ray excited photodynamic therapy obviously has better penetration depth in bio‐tissue. What's more, the SHNPs also possess well photothermal conversion efficiency for photothermal therapy, because Bi2S3 is a thin band semiconductor with strong near‐infrared absorption that can cause local overheat. In vivo tumor ablation studies show that synergistic radio/photodynamic/photothermal therapy achieves more significant therapeutic effect than any single treatment. In addition, with the strong X‐ray attenuation and high near‐infrared absorption, the as‐obtained SHNPs can also be applied as a multimodal contrast agent in CT/PA imaging.  相似文献   

15.
Integration of magnetic resonance imaging (MRI) and other imaging modalities is promising to furnish complementary information for accurate cancer diagnosis and imaging‐guided therapy. However, most gadolinium (Gd)–chelator MR contrast agents are limited by their relatively low relaxivity and high risk of released‐Gd‐ions‐associated toxicity. Herein, a radionuclide‐64Cu‐labeled doxorubicin‐loaded polydopamine (PDA)–gadolinium‐metallofullerene core–satellite nanotheranostic agent (denoted as CDPGM) is developed for MR/photoacoustic (PA)/positron emission tomography (PET) multimodal imaging‐guided combination cancer therapy. In this system, the near‐infrared (NIR)‐absorbing PDA acts as a platform for the assembly of different moieties; Gd3N@C80, a kind of gadolinium metallofullerene with three Gd ions in one carbon cage, acts as a satellite anchoring on the surface of PDA. The as‐prepared CDPGM NPs show good biocompatibility, strong NIR absorption, high relaxivity (r 1 = 14.06 mM?1 s?1), low risk of release of Gd ions, and NIR‐triggered drug release. In vivo MR/PA/PET multimodal imaging confirms effective tumor accumulation of the CDPGM NPs. Moreover, upon NIR laser irradiation, the tumor is completely eliminated with combined chemo‐photothermal therapy. These results suggest that the CDPGM NPs hold great promise for cancer theranostics.  相似文献   

16.
Following the “detect‐to‐treat” strategy, by biological engineering, the emerging upconversion nanoparticles (UCNPs) have become one of the most promising inorganic nanomedicines, and their biomedical applications have gradually shifted from multimodal tumor imaging to highly efficient cancer therapy. The past few years have witnessed a three‐stage development of UCNP‐based nanomedicines. On one hand, UCNPs can optimize each clinical treatment tool (chemotherapy, photodynamic therapy (PDT), radiotherapy (RT)) by controlled drug delivery/release, near‐infrared (NIR)‐excited deep PDT, and radiosensitization, respectively, all of which contribute greatly to the optimized treatment efficacy along with minimized side effects. On the other hand, several individual treatments can be “smartly” integrated into a single UCNP‐based nanotheranostic system for multimodal synergetic therapy, which can further improve the overall therapeutic effectiveness. Especially, UCNPs provide more‐effective strategies for overcoming tumor hypoxia, thus leading to an ideal treatment efficacy for complete eradication of solid tumors. Finally, the critical issues regarding the future development of UCNPs are discussed to promote the clinic‐translational applications of UCNP‐based nanomedicines, as well as realization of our “one drug fits all” dream.  相似文献   

17.
Lung cancer is the most common and most fatal cancer worldwide. Thus, improving early diagnosis and therapy is necessary. Previously, gadolinium‐based ultra‐small rigid platforms (USRPs) were developed to serve as multimodal imaging probes and as radiosensitizing agents. In addition, it was demonstrated that USRPs can be detected in the lungs using ultrashort echo‐time magnetic resonance imaging (UTE‐MRI) and fluorescence imaging after intrapulmonary administration in healthy animals. The goal of the present study is to evaluate their theranostic properties in mice with bioluminescent orthotopic lung cancer, after intrapulmonary nebulization or conventional intravenous administration. It is found that lung tumors can be detected non‐invasively using fluorescence tomography or UTE‐MRI after nebulization of USRPs, and this is confirmed by histological analysis of the lung sections. The deposition of USRPs around the tumor nodules is sufficient to generate a radiosensitizing effect when the mice are subjected to a single dose of 10 Gy conventional radiation one day after inhalation (mean survival time of 112 days versus 77 days for irradiated mice without USRPs treatment). No apparent systemic toxicity or induction of inflammation is observed. These results demonstrate the theranostic properties of USRPs for the multimodal detection of lung tumors and improved radiotherapy after nebulization.  相似文献   

18.
Patients with pancreatic cancer(PCa)have a poor prognosis apart from the few suitable for surgery.Photodynamic therapy(PDT)is a minimally invasive treatment modality whose efficacy and safety in treating unresectable localized PCa have been corroborated in clinic.Yet,it suffers from certain limitations during clinical exploitation,including insufficient photosensitizers(PSs)delivery,tumor-oxygenation dependency,and treatment escape of aggressive tumors.To overcome these obstacles,an increasing number of researchers are currently on a quest to develop photosensitizer nanoparticles(NPs)by the use of a variety of nanocarrier systems to improve cellular uptake and biodistribution of photosensitizers.Encapsulation of PSs with NPs endows them significantly higher accumulation within PCa tumors due to the increased solubility and stability in blood circulation.A number of approaches have been explored to produce NPs co-delivering multi-agents affording PDT-based synergistic therapies for improved response rates and durability of response after treatment.This review provides an overview of available data regarding the design,methodology,and oncological outcome of the innovative NPs-based PDT of PCa.  相似文献   

19.
Progress of nanotechnology in recent years has stimulated fast development of nanoparticles in biomedical research. Photoacoustic (PA) imaging as an emerging non‐invasive technique in molecular imaging has improved imaging depth relative to conventional optical imaging, demonstrating great potential in clinical applications. The convergence of nanotechnology and PA imaging has enabled a broad spectrum of new opportunities in fundamental biology and translation medicine. This review focuses on the recent advances of organic nanoparticles in PA imaging applications. Near‐infrared absorbing organic nanoparticles are classified and discussed according to their different imaging applications, which include tumor imaging, gastrointestinal imaging, sentinel lymph node imaging, disease microenvironment imaging and real‐time drug imaging. The chemistry and PA properties of organic nanoparticles are discussed in details to highlight their own merits, and their challenges and perspectives in PA imaging are also discussed.  相似文献   

20.
The precision of orientation to target placement during invasive therapy is mainly influenced by tool–tissue interaction. In this study, we aim to investigate a transparent Poly (vinyl alcohol) (PVA) hydrogel as tissue-equivalent material which is used in accurate surgical insertion research. The PVA hydrogel with specified formula was prepared by means of physical and chemical crosslink. The effects of chemical composition and synthesis technique on the biomechanical property, density and micro-structure morphology of PVA materials have been investigated in detail. It can be concluded that when PVA concentration is 8 g/dl, the NaCl concentration is 4 wt.%, with mix water/DMSO solvent, prepared under 7 freeze/thaw cycles, the material has the most similar properties with kidney tissue. Experimental results demonstrate that this tissue-equivalent material could be used in the ex vivo insertion accuracy test for robot-assisted percutaneous intervention and surgical training in minimally invasive surgery (MIS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号