首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A flexible and wearable aqueous symmetrical lithium‐ion battery is developed using a single LiVPO4F material as both cathode and anode in a “water‐in‐salt” gel polymer electrolyte. The symmetric lithium‐ion chemistry exhibits high energy and power density and long cycle life, due to the formation of a robust solid electrolyte interphase consisting of Li2CO3‐LiF, which enables fast Li‐ion transport. Energy densities of 141 Wh kg?1, power densities of 20 600 W kg?1, and output voltage of 2.4 V can be delivered during >4000 cycles, which is far superior to reported aqueous energy storage devices at the same power level. Moreover, the full cell shows unprecedented tolerance to mechanical stress such as bending and cutting, where it not only does not catastrophically fail, as most nonaqueous cells would, but also maintains cell performance and continues to operate in ambient environment, a unique feature apparently derived from the high stability of the “water‐in‐salt” gel polymer electrolyte.  相似文献   

2.
3.
Multifunctional batteries with enhanced safety performance have received considerable attention for their applications at extreme conditions. However, few batteries can endure a mix‐up of battery polarity during charging, a common wrong operation of rechargeable batteries. Herein, a polarity‐switchable battery based on the switchable intercalation feature of graphite is demonstrated. The unique redox‐amphoteric intercalation behavior of graphite allows a reversible switching of graphite between anode and cathode, thus enabling polarity‐switchable symmetric graphite batteries. The large potential gap between anion and cation intercalation delivers a high midpoint device voltage (≈average voltage) of ≈4.5 V. Further, both the graphite anode and cathode are kinetically activated during the polarity switching. Consequently, polarity‐switchable symmetric graphite batteries exhibit a remarkable cycling stability (96% capacity retention after 500 cycles), a high power density of 8.66 kW kg?1, and a high energy density of 227 Wh kg?1 (calculated based on the total weight of active materials in both anode and cathode), which are superior to other symmetric batteries and recently reported dual‐graphite or dual‐carbon batteries. This work will inspire the development of new multifunctional energy‐storage devices based on novel materials and electrolyte systems.  相似文献   

4.
A novel hybrid Li‐ion capacitor (LIC) with high energy and power densities is constructed by combining an electrochemical double layer capacitor type cathode (graphene hydrogels) with a Li‐ion battery type anode (TiO2 nanobelt arrays). The high power source is provided by the graphene hydrogel cathode, which has a 3D porous network structure and high electrical conductivity, and the counter anode is made of free‐standing TiO2 nanobelt arrays (NBA) grown directly on Ti foil without any ancillary materials. Such a subtle designed hybrid Li‐ion capacitor allows rapid electron and ion transport in the non‐aqueous electrolyte. Within a voltage range of 0.0?3.8 V, a high energy of 82 Wh kg?1 is achieved at a power density of 570 W kg?1. Even at an 8.4 s charge/discharge rate, an energy density as high as 21 Wh kg?1 can be retained. These results demonstrate that the TiO2 NBA//graphene hydrogel LIC exhibits higher energy density than supercapacitors and better power density than Li‐ion batteries, which makes it a promising electrochemical power source.  相似文献   

5.
Titanium‐based oxides including TiO2 and M‐Ti‐O compounds (M = Li, Nb, Na, etc.) family, exhibit advantageous structural dynamics (2D ion diffusion path, open and stable structure for ion accommodations) for practical applications in energy storage systems, such as lithium‐ion batteries, sodium‐ion batteries, and hybrid pseudocapacitors. Further, Ti‐based oxides show high operating voltage relative to the deposition of alkali metal, ensuring full safety by avoiding the formation of lithium and sodium dendrites. On the other hand, high working potential prevents the decomposition of electrolyte, delivering excellent rate capability through the unique pseudocapacitive kinetics. Nevertheless, the intrinsic poor electrical conductivity and reaction dynamics limit further applications in energy storage devices. Recently, various work and in‐depth understanding on the morphologies control, surface engineering, bulk‐phase doping of Ti‐based oxides, have been promoted to overcome these issues. Inspired by that, in this review, the authors summarize the fundamental issues, challenges and advances of Ti‐based oxides in the applications of advanced electrochemical energy storage. Particularly, the authors focus on the progresses on the working mechanism and device applications from lithium‐ion batteries to sodium‐ion batteries, and then the hybrid pseudocapacitors. In addition, future perspectives for fundamental research and practical applications are discussed.  相似文献   

6.
Novel electrode materials consisting of hollow cobalt sulfide nanoparticles embedded in graphitic carbon nanocages (HCSP?GCC) are facilely synthesized by a top‐down route applying room‐temperature synthesized Co‐based zeolitic imidazolate framework (ZIF‐67) as the template. Owing to the good mechanical flexibility and pronounced structure stability of carbon nanocages‐encapsulated Co9S8, the as‐obtained HCSP?GCC exhibit superior Li‐ion storage. Working in the voltage of 1.0?3.0 V, they display a very high energy density (707 Wh kg?1), superior rate capability (reversible capabilities of 536, 489, 438, 393, 345, and 278 mA h g?1 at 0.2, 0.5, 1, 2, 5, and 10C, respectively), and stable cycling performance (≈26% capacity loss after long 150 cycles at 1C with a capacity retention of 365 mA h g?1). When the work voltage is extended into 0.01–3.0 V, a higher stable capacity of 1600 mA h g?1 at a current density of 100 mA g?1 is still achieved.  相似文献   

7.
Developing high‐power cathodes is crucial to construct next‐generation quick‐charge batteries for electric transportation and grid applications. However, this mainly relies on nanoengineering strategies at the expense of low scalability and high battery cost. Another option is provided herein to build high‐power cathodes by exploiting inexpensive bulk graphite as the active electrode material, where anion intercalation is involved. With the assistance of a strong alginate binder, the disintegration problem of graphite cathodes due to the large volume variation of >130% is well suppressed, making it possible to investigate the intrinsic electrochemical behavior and to elucidate the charge storage kinetics of graphite cathodes. Ultrahigh power capability up to 42.9 kW kg?1 at the energy density of >300 Wh kg?1 (based on graphite mass) and long cycling life over 10 000 cycles are achieved, much higher than those of conventional cathode materials for Li‐ion batteries. A self‐activating and capacitive anion intercalation into graphite is discovered for the first time, making graphite a new intrinsic intercalation‐pseudocapacitance cathode material. The finding highlights the kinetical difference of anion intercalation (as cathode) from cation intercalation (as anode) into graphitic carbon materials, and new high‐power energy storage devices will be inspired.  相似文献   

8.
9.
10.
Hard carbons (HC) have potential high capacities and power capability, prospectively serving as an alternative anode material for Li‐ion batteries (LIB). However, their low initial coulombic efficiency (ICE) and the resulting poor cyclability hinder their practical applications. Herein, a facile and effective approach is developed to prelithiate hard carbons by a spontaneous chemical reaction with lithium naphthalenide (Li‐Naph). Due to the mild reactivity and strong lithiation ability of Li‐Naph, HC anode can be prelithiated rapidly in a few minutes and controllably to a desirable level by tuning the reaction time. The as‐formed prelithiated hard carbon (pHC) has a thinner, denser, and more robust solid electrolyte interface layer consisting of uniformly distributed LiF, thus demonstrating a very high ICE, high power, and stable cyclability. When paired with the current commercial LiCoO2 and LiFePO4 cathodes, the assembled pHC/LiCoO2 and pHC/LiFePO4 full cells exhibit a high ICE of >95.0% and a nearly 100% utilization of electrode‐active materials, confirming a practical application of pHC for a new generation of high capacity and high power LIBs.  相似文献   

11.
Solid‐electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li‐ and Na‐ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li‐ or Na‐based electrolyte, and that ionic transport can be kinetically controlled. Selective Li‐ and Na‐based SEI membranes are produced using Li‐ or Na‐based electrolytes, respectively. The Na‐based SEI allows easy transport of Li ions, while the Li‐based SEI shuts off Na‐ion transport. Na‐ion storage can be manipulated by tuning the SEI layer with film‐forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g?1; ≈ 1/10 of the normal capacity (250 mAh g?1). Unusual selective/preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion‐selective conductors using electrochemical approaches.  相似文献   

12.
In order to satisfy the energy demands of the electromobility market, both Ni‐rich and Li‐rich layered oxides of NCM type are receiving much attention as high‐energy‐density cathode materials for application in Li‐ion batteries. However, due to different stability issues, their longevity is limited. During formation and continuous cycling, especially the electronic and crystal structure suffers from various changes, eventually leading to fatigue and mechanical degradation. In recent years, comprehensive battery research has been conducted at Karlsruhe Institute of Technology, mainly aiming at better understanding the primary degradation processes occurring in these layered transition metal oxides. The characteristic process of formation and mechanisms of fatigue are fundamentally characterized and the effect of chemical composition on cell chemistry, electrochemistry, and cycling stability is addressed on different length scales by use of state‐of‐the‐art analytical techniques, ranging from “standard” characterization tools to combinations of advanced in situ and operando methods. Here, the results are presented and discussed within a broader scientific context.  相似文献   

13.
A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium‐based dual ion battery with dual‐graphite electrode is developed. It delivers a reversible capacity of 62 mA h g?1 and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K+ and PF6? into/from graphite is proposed and discussed in detail, with various characterizations to support.  相似文献   

14.
15.
16.
17.
Sodium‐ion capacitors (SICs) have attracted enormous attention due to their high energy density and high power density. In this work, N and S codoped hollow carbon nanobelts (N/S‐HCNs) are synthesized by a self‐templated method. The as‐synthesized carbon nanobelts exhibit excellent performance in pseudocapacitance and electric double layer anions adsorption. After pairing the N/S‐HCNs cathode with a tin foil anode in a carbonate electrolyte, the obtained SIC achieves a high specific capacity of 400 mAh g?1 at 1 A g?1 (based on the mass of cathode material) and energy density of 250.35 Wh kg?1 at 676 W kg?1 (based on the total mass of cathode and anode materials). Besides, the presented SIC also demonstrates high cycling stability with almost 100% capacity retention after 10 000 cycles, which is among the best results of the reported SICs, suggesting the potential for high‐performance energy storage applications.  相似文献   

18.
A self‐templated strategy is developed to fabricate hierarchical TiO2/SnO2 hollow spheres coated with graphitized carbon (HTSO/GC‐HSs) by combined sol–gel processes with hydrothermal treatment and calcination. The as‐prepared mesoporous HTSO/GC‐HSs present an approximate yolk‐double–shell structure, with high specific area and small nanocrystals of TiO2 and SnO2, and thus exhibit superior electrochemical reactivity and stability when used as anode materials for Li‐ion batteries. A high reversible specific capacity of about 310 mAh g?1 at a high current density of 5 A g?1 can be achieved over 500 cycles indicating very good cycle stability and rate performance.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号