首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pulmonary codelivery system that can simultaneously deliver doxorubicin (DOX) and Bcl2 siRNA to the lungs provides a promising local treatment strategy for lung cancers. In this study, DOX is conjugated onto polyethylenimine (PEI) by using cis‐aconitic anhydride (CA, a pH‐sensitive linker) to obtain PEI‐CA‐DOX conjugates. The PEI‐CA‐DOX/siRNA complex nanoparticles are formed spontaneously via electrostatic interaction between cationic PEI‐CA‐DOX and anionic siRNA. The drug release experiment shows that DOX releases faster at acidic pH than at pH 7.4. Moreover, PEI‐CA‐DOX/Bcl2 siRNA complex nanoparticles show higher cytotoxicity and apoptosis induction in B16F10 cells than those treated with either DOX or Bcl2 siRNA alone. When the codelivery systems are directly sprayed into the lungs of B16F10 melanoma‐bearing mice, the PEI‐CA‐DOX/Bcl2 siRNA complex nanoparticles exhibit enhanced antitumor efficacy compared with the single delivery of DOX or Bcl2 siRNA. Compared with systemic delivery, most drug and siRNA show a long‐term retention in the lungs via pulmonary delivery, and a considerable number of the drug and siRNA accumulate in tumor tissues of lungs, but rarely in normal lung tissues. The PEI‐CA‐DOX/Bcl2 siRNA complex nanoparticles are promising for the treatment of metastatic lung cancer by pulmonary delivery with low side effects on the normal tissues.  相似文献   

2.
Chemotherapy is well recognized to induce immune responses during some chemotherapeutic drugs‐mediated tumor eradication. Here, a strategy involving blocking programmed cell death protein 1 (PD‐1) to enhance the chemotherapeutic effect of a doxorubicin nanoprodrug HA‐Psi‐DOX is proposed and the synergetic mechanism between them is further studied. The nanoprodrugs are fabricated by conjugating doxorubicin (DOX) to an anionic polymer hyaluronic acid (HA) via a tumor overexpressed matrix metalloproteinase sensitive peptide (CPLGLAGG) for tumor targeting and enzyme‐activated drug release. Once accumulated at the tumor site, the nanoprodrug can be activated to release antitumor drug by tumor overexpressed MMP‐2. It is found that HA‐Psi‐DOX nanoparticles can kill tumor cells effectively and initiate an antitumor immune response, leading to the upregulation of interferon‐γ. This cytokine promotes the expression of programmed cell death protein‐ligand 1 (PD‐L1) on tumor cells, which will cause immunosuppression after interacting with PD‐1 on the surface of lymphocytes. The results suggest that the therapeutic efficiency of HA‐Psi‐DOX nanoparticles is significantly improved when combined with checkpoint inhibitors anti‐PD‐1 antibody (α‐PD1) due to the neutralization of immunosuppression by blocking the interaction between PD‐L1 and PD‐1. This therapeutic system by combining chemotherapy and immunotherapy further increases the link between conventional tumor therapies and immunotherapy.  相似文献   

3.
Insufficient drug release as well as poor drug penetration are major obstacles for effective nanoparticles (NPs)‐based cancer therapy. Herein, the high aqueous instability of amorphous calcium carbonate (ACC) is employed to construct doxorubicin (DOX) preloaded and monostearin (MS) coated “Pandora's box” (MS/ACC–DOX) NPs for lipase‐triggered water‐responsive drug release in lipase‐overexpressed tumor tissue to induce a neighboring effect and enhance drug penetration. MS as a solid lipid can prevent potential drug leakage of ACC–DOX NPs during the circulatory process, while it can be readily be disintegrated in lipase‐overexpressed SKOV3 cells to expose the ACC–DOX core. The high aqueous instability of ACC will lead to burst release of the encapsulated DOX to induce apoptosis and cytotoxicity to kill the tumor cells. The liberated NPs from the dead or dying cells continue to respond to the ubiquitous aqueous environment to sufficiently release DOX once unpacked, like the “Pandora's box”, leading to severe cytotoxicity to neighboring cells (neighboring effect). Moreover, the continuously released free DOX molecules can readily diffused through the tumor extracellular matrix to enhance drug penetration to deep tumor tissue. Both effects contribute to achieve elevated antitumor benefits.  相似文献   

4.
Nanotechnology‐based drug delivery has a great potential to revolutionize cancer treatment by enhancing anticancer drug efficacy and reducing drug toxicity. Here, a bioinspired nano‐prodrug (BiNp) assembled by an antineoplastic peptidic derivative (FA‐KLA‐Hy‐DOX), a folate acid (FA)‐incorporated proapoptotic peptide (KLAKLAK)2 (KLA) to doxorubicin (DOX) via an acid‐labile hydrozone bond (Hy) is constructed. The hydrophobic antineoplastic agent DOX is efficiently shielded in the core of nano‐prodrug. With FA targeting moieties on the surface, the obtained BiNp shows significant tumor‐targeting ability and enhances the specific uptake of cancer cells. Upon the trigger by the intracellular acidic microenvironment of endosomes, the antineoplastic agent DOX is released on‐demand and promotes the apoptosis of cancer cells. Simultaneously, the liberated FA‐KLA can induce the dysfunction of mitochondria and evoke mitochondria‐dependent apoptosis. In vitro and in vivo results show that the nano‐prodrug BiNp with integrated programmed functions exhibits remarkable inhibition of tumor and achieves a maximized therapeutic efficiency with a minimized side effect.  相似文献   

5.
Engineering functional nanomaterials with high therapeutic efficacy and minimum side effects has increasingly become a promising strategy for cancer treatment. Herein, a reactive oxygen species (ROS) enhanced combination chemotherapy platform is designed via a biocompatible metal‐polyphenol networks self‐assembly process by encapsulating doxorubicin (DOX) and platinum prodrugs in nanoparticles. Both DOX and platinum drugs can activate nicotinamide adenine dinucleotide phosphate oxidases, generating superoxide radicals (O2??). The superoxide dismutase‐like activity of polyphenols can catalyze H2O2 generation from O2??. Finally, the highly toxic HO? free radicals are generated by a Fenton reaction. The ROS HO? can synergize the chemotherapy by a cascade of bioreactions. Positron emission tomography imaging of 89Zr‐labeled as‐prepared DOX@Pt prodrug Fe3+ nanoparticles (DPPF NPs) shows prolonged blood circulation and high tumor accumulation. Furthermore, the DPPF NPs can effectively inhibit tumor growth and reduce the side effects of anticancer drugs. This study establishes a novel ROS promoted synergistic nanomedicine platform for cancer therapy.  相似文献   

6.
Graphene oxide (GO)‐based theranostic nanohybrid is designed for tumor induced imaging and potential combinational tumor therapy. The anti‐tumor drug, Doxorubicin (DOX) is chemically conjugated to the poly(ethylenimine)‐co‐poly(ethylene glycol) (PEI‐PEG) grafted GO via a MMP2‐cleavable PLGLAG peptide linkage. The therapeutic efficacy of DOX is chemically locked and its intrinsic fluorescence is quenched by GO under normal physiological condition. Once stimulated by the MMP2 enzyme over‐expressed in tumor tissues, the resulting peptide cleavage permits the unloading of DOX for tumor therapy and concurrent fluorescence recovery of DOX for in situ tumor cell imaging. Attractively, this PEI‐bearing nanohybrid can mediate efficient DNA transfection and shows great potential for combinational drug/gene therapy. This tumor induced imaging and potential combinational therapy will open a window for tumor treatment by offering a unique theranostic approach through merging the diagnostic capability and pathology‐responsive therapeutic function.  相似文献   

7.
Poor deep tumor penetration and incomplete intracellular drug release remain challenges for antitumor nanomedicine application in clinical settings. Herein, a nanomedicine (RLPA‐NPs) is developed that can achieve prolonged blood circulation, deep tumor penetration, active‐targeting of cancer cells, endosome/lysosome escape, and intracellular selectivity self‐amplified drug release for effective drug delivery. The RLPA‐NPs are constructed by encapsulation of a pH‐sensitive polymer octadecylamine‐poly(aspartate‐1‐(3‐aminopropyl) imidazole) (OA‐P(Asp‐API)) and a ROS‐generation agent, β‐Lapachone (Lap), in micelles assembled by the tumor‐penetration peptide internalizing RGD (iRGD)‐modified ROS‐responsive paclitaxel (PTX)‐prodrug. iRGD could promote RLPA‐NPs penetration into deep tumor tissue, and specific targeting to cancer cells. After internalization by cancer cells through receptor‐mediated endocytosis, OA‐P(Asp‐API) can rapidly protonate in the endosome's acidic environment, resulting in RLPA‐NPs escape from the endosome through the “proton sponge effect”. At the same time, the RLPA‐NPs micelle disassembles, releasing Lap and PTX‐prodrug. Subsequently, the released Lap could generate ROS, consequently amplifying and accelerating PTX release to kill tumor cells. The in vitro and in vivo studies demonstrated that RLPA‐NPs can significantly improve the therapeutic effect compared to control groups. Therefore, RLPA‐NPs are a promising nanoplatform for overcoming multiple physiological and pathological barriers to enhance drug delivery.  相似文献   

8.
Patients with advanced melanoma that is of low tumor‐associated antigen (TAA) expression often respond poorly to PD‐1/PD‐L1 blockade therapy. Epigenetic modulators, such as hypomethylation agents (HMAs), can enhance the antitumor immune response by inducing TAA expression. Here, a dual bioresponsive gel depot that can respond to the acidic pH and reactive oxygen species (ROS) within the tumor microenvironment (TME) for codelivery of anti‐PD1 antibody (aPD1) and Zebularine (Zeb), an HMA, is engineered. aPD1 is first loaded into pH‐sensitive calcium carbonate nanoparticles (CaCO3 NPs), which are then encapsulated in the ROS‐responsive hydrogel together with Zeb (Zeb‐aPD1‐NPs‐Gel). It is demonstrated that this combination therapy increases the immunogenicity of cancer cells, and also plays roles in reversing immunosuppressive TME, which contributes to inhibiting the tumor growth and prolonging the survival time of B16F10‐melanoma‐bearing mice.  相似文献   

9.
Nanodrug‐based cancer therapy is impeded by poor penetration into deep tumor tissues mainly due to the overexpression of hyaluronic acid (HA) in the tumor extracellular matrix (ECM). Although modification of nanoparticles (NPs) with hyaluronidase (HAase) is a potent strategy, it remains challenging to get a uniform distribution of drug at the tumor site because of the internalization of NPs by the cells in the tumor and HA regeneration. Herein, an intelligent nanocarrier, which can release HAase in response to the acidic tumor microenvironment (pH 6.5) and perform a strong neighboring effect with size reduction to overcome the above two problems and accomplish drug deep tumor penetration in vivo, is reported. In this design, HAase is encapsulated on the surfaces of doxorubicin (DOX) preloaded ZnO‐DOX NPs using a charge convertible polymer PEG‐PAH‐DMMA (ZDHD). The polymer can release HAase to degrade HA in the tumor ECM (pH 6.5). ZnO‐DOX NPs can release DOX in lysosomes (pH 4.5) to induce cell apoptosis, and exert a neighboring effect with size reduction to infect neighboring cells. The hierarchical targeted release of HAase and drugs is demonstrated to enhance tumor penetration and decrease side effects in vivo. This work shows promise for further application of ZDHD NPs in cancer therapy.  相似文献   

10.
Despite the exciting advances in cancer chemotherapy over past decades, drug resistance in cancer treatment remains one of the primary reasons for therapeutic failure. IR‐780 loaded pH‐responsive polymeric prodrug micelles with near infrared (NIR) photothermal effect are developed to circumvent the drug resistance in cancer treatment. The polymeric prodrug micelles are stable in physiological environment, while exhibit fast doxorubicin (DOX) release in acidic condition and significant temperature elevation under NIR laser irradiation. Phosphorylcholine‐based biomimetic micellar shell and acid‐sensitive drug conjugation endow them with prolonged circulation time and reduced premature drug release during circulation to conduct tumor site‐specific chemotherapy. The polymeric prodrug micelles combined with NIR laser irradiation could significantly enhance intracellular DOX accumulation and synergistically induce the cell apoptosis in DOX‐resistant MCF‐7/ADR cells. Meanwhile, the tumor site‐specific chemotherapy combined with hyperthermia effect induces significant inhibition of MCF‐7/ADR tumor growth in tumor‐bearing mice. These results demonstrate that the well‐designed IR‐780 loaded polymeric prodrug micelles for hyperthermia‐assisted site‐specific chemotherapy present an effective approach to reverse drug resistance.  相似文献   

11.
Chemotherapy has been validated unavailable for treatment of renal cell carcinoma (RCC) in clinic due to its intrinsic drug resistance. Sensitization of chemo‐drug response plays a crucial role in RCC treatment and increase of patient survival. Herein, a recognition‐reaction‐aggregation (RRA) cascaded strategy is utilized to in situ construct peptide‐based superstructures on the renal cancer cell membrane, enabling specifically perturbing the permeability of cell membranes and enhancing chemo‐drug sensitivity in vitro and in vivo. First, P1‐DBCO can specifically recognize renal cancer cells by targeting carbonic anhydrase IX. Subsequently, P2‐N3 is introduced and efficiently reacts with P1‐DBCO to form a peptide P3, which exhibits enhanced hydrophobicity and simultaneously aggregates into a superstructure. Interestingly, the superstructure retains on the cell membrane and perturbs its integrity/permeability, allowing more doxorubicin (DOX) uptaken by renal cancer cells. Owing to this increased influx, the IC50 is significantly reduced by nearly 3.5‐fold compared with that treated with free DOX. Finally, RRA strategy significantly inhibits the tumor growth of xenografted mice with a 3.2‐fold enhanced inhibition rate compared with that treated with free DOX. In summary, this newly developed RRA strategy will open a new avenue for chemically engineering cell membranes with diverse biomedical applications.  相似文献   

12.
Short circulation time and off‐target toxicity are the main challenges faced by small‐molecule chemotherapeutics. To overcome these shortcomings, an albumin‐binding peptide conjugate of chemotherapeutics is developed that binds specifically to endogenous albumin and harnesses its favorable pharmacokinetics and pharmacodynamics for drug delivery to tumors. A protein‐G‐derived albumin‐binding domain (ABD) is conjugated with doxorubicin (Dox) via a pH‐sensitive linker. One to two Dox molecules are conjugated to ABD without loss of aqueous solubility. The albumin‐binding ABD–Dox conjugate exhibits nanomolar affinity for human and mouse albumin, and upon administration in mice, shows a plasma half‐life of 29.4 h, which is close to that of mouse albumin. Additionally, 2 h after administration, ABD–Dox exhibits an approximately 4‐fold higher concentration in the tumor than free Dox. Free Dox clears quickly from the tumor, while ABD–Dox maintains a steady concentration in the tumor for at least 72 h, so that its relative accumulation at 72 h is ≈120‐fold greater than that of free Dox. The improved pharmacokinetics and biodistribution of ABD–Dox result in enhanced therapeutic efficacy in syngeneic C26 colon carcinoma and MIA PaCa‐2 pancreatic tumor xenografts, compared with free Dox and aldoxorubicin, an albumin‐reactive Dox prodrug currently in clinical development.  相似文献   

13.
In this work, a matrix metalloproteinase (MMP)‐triggered tumor targeted mesoporous silica nanoparticle (MSN) is designed to realize near‐infrared (NIR) photothermal‐responsive drug release and combined chemo/photothermal tumor therapy. Indocyanine green (ICG) and doxorubicin (DOX) are both loaded in the MSN modified with thermal‐cleavable gatekeeper (Azo‐CD), which can be decapped by ICG‐generated hyperthermia under NIR illumination. A peptidic sequence containing a short PEG chain, matrix metalloproteinase (MMP) substrate (PLGVR) and tumor cell targeting motif (RGD) are further decorated on the MSN via a host–guest interaction. The PEG chain can protect the MSN during the circulation and be cleaved off in the tumor tissues with overexpressed MMP, and then the RGD motif is switched on to target tumor cells. After the tumor‐triggered targeting process, the NIR irradiation guided by ICG fluorescence can trigger cytosol drug release and realize combined chemo/photothermal therapy.  相似文献   

14.
Light‐triggered drug delivery based on near‐infrared (NIR)‐mediated photothermal nanocarriers has received tremendous attention for the construction of cooperative therapeutic systems in nanomedicine. Herein, a new paradigm of light‐responsive drug carrier that doubles as a photothermal agent is reported based on the NIR light‐absorber, Rb x WO3 (rubidium tungsten bronze, Rb‐TB) nanorods. With doxorubicin (DOX) payload, the DOX‐loaded Rb‐TB composite (Rb‐TB‐DOX) simultaneously provides a burst‐like drug release and intense heating effect upon 808‐nm NIR light exposure. MTT assays show the photothermally enhanced antitumor activity of Rb‐TB‐DOX to the MCF‐7 cancer cells. Most remarkably, Rb‐TB‐DOX combined with NIR irradiation also shows dramatically enhanced chemotherapeutic effect to DOX‐resistant MCF‐7 cells compared with free DOX, demonstrating the enhanced efficacy of combinational chemo‐photothermal therapy for potentially overcoming drug resistance in cancer chemotherapy. Furthermore, in vivo study of combined chemo‐photothermal therapy is also conducted and realized on pancreatic (Pance‐1) tumor‐bearing nude mice. Apart from its promise for cancer therapy, the as‐prepared Rb‐TB can also be employed as a new dual‐modal contrast agent for photoacoustic tomography and (PAT) X‐ray computed tomography (CT) imaging because of its high NIR optical absorption capability and strong X‐ray attenuation ability, respectively. The results presented in the current study suggest promise of the multifunctional Rb x WO3 nanorods for applications in cancer theranostics.  相似文献   

15.
Multiple drug resistance (MDR) of cancer cells is a major cause of chemotherapy failure. It is currently a great challenge to develop a direct and effective strategy for continuously inhibiting the P‐glycoprotein (P‐gp) drug pump of MDR tumor cells, thus enhancing the intracellular concentration of the therapeutic agent for effectively killing MDR tumor cells. Here, a new implantable hierarchical‐structured ultrafine fiber device is developed via a microfluidic‐electrospinning technology for localized codelivery of doxorubicin (DOX) and apatinib (AP). An extremely high encapsulation efficiency of ≈99% for the dual drugs is achieved through this strategy. The release of the loaded dual drugs can be controlled in a programmable release model with a rapid release of the micelles, while AP is slowly released. The sustained release of AP can continuously inhibit the P‐gp drug pump of MDR tumor cells, increasing the intracellular DOX accumulation. The in vivo DOX biodistribution displays that the DOX accumulation in the tumor tissues achieves 17.82% after implanting the fiber device for 72 h, which is 6.36‐fold higher than that of the intravenously injected DOX. Importantly, the fiber device shows an excellent antitumor effect on MDR tumor‐bearing mice with low systemic toxicity.  相似文献   

16.
The progress of antitumor immunotherapy is usually limited by tumor‐associated macrophages (TAMs) that account for the highest proportion of immunosuppressive cells in the tumor microenvironment, and the TAMs can also be reversed by modulating the M2‐like phenotype. Herein, a biomimetic polymer magnetic nanocarrier is developed with selectively targeting and polarizing TAMs for potentiating immunotherapy of breast cancer. This nanocarrier PLGA‐ION‐R837 @ M (PIR @ M) is achieved, first, by the fabrication of magnetic polymer nanoparticles (NPs) encapsulating Fe3O4 NPs and Toll‐like receptor 7 (TLR7) agonist imiquimod (R837) and, second, by the coating of the lipopolysaccharide (LPS)‐ treated macrophage membranes on the surface of the NPs for targeting TAMs. The intracellular uptake of the PIR @ M can greatly polarize TAMs from M2 to antitumor M1 phenotype with the synergy of Fe3O4 NPs and R837. The relevant mechanism of the polarization is deeply studied through analyzing the mRNA expression of the signaling pathways. Different from previous reports, the polarization is ascribed to the fact that Fe3O4 NPs mainly activate the IRF5 signaling pathway via iron ions instead of the reactive oxygen species‐induced NF‐κB signaling pathway. The anticancer effect can be effectively enhanced through potentiating immunotherapy by the polarization of the TAMs in the combination of Fe3O4 NPs and R837.  相似文献   

17.
Prodrug therapy is one strategy to deliver anticancer drugs in a less reactive manner to reduce nonspecific cytotoxicity. A new multifunctional anticancer prodrug system based on water‐dispersible fullerene (C60) aggregates is introduced; this prodrug system demonstrates active targeting, pH‐responsive chemotherapy, and photodynamic therapeutic (PDT) properties. Incorporating (via a cleavable bond) an anticancer drug, which is doxorubicin (DOX) in this study, and a targeting ligand (folic acid) onto fullerene while maintaining an overall size of approximately 135 nm produces a more specific anticancer prodrug. This prodrug can enter folate receptor (FR)‐positive cancer cells and kill the cells via intracellular release of the active drug form. Moreover, the fullerene aggregate carrier exhibits PDT action; the cytotoxicity of the system towards FR‐positive cancer cells is increased in response to light irradiation. As the DOX drug molecules are conjugated onto fullerene, the DOX fluorescence is significantly quenched by the strong electron‐accepting capability of fullerene. The fluorescence restores upon release from fullerene, so this fluorescence quenching–restoring feature can be used to track intracellular DOX release. The combined effect of chemotherapy and PDT increases the therapeutic efficacy of the DOX–fullerene aggregate prodrug. This study provides useful insights into designing and improving the applicability of fullerene for other targeted cancer prodrug systems.  相似文献   

18.
Targeting programmed cell death protein 1 (PD‐1)/programmed death ligand 1 (PD‐L1) immunologic checkpoint blockade with monoclonal antibodies has achieved recent clinical success in antitumor therapy. However, therapeutic antibodies exhibit several issues such as limited tumor penetration, immunogenicity, and costly production. Here, Bristol‐Myers Squibb nanoparticles (NPs) are prepared using a reprecipitation method. The NPs have advantages including passive targeting, hydrophilic and nontoxic features, and a 100% drug loading rate. BMS‐202 is a small‐molecule inhibitor of the PD‐1/PD‐L1 interaction that is developed by BMS. Transfer of BMS‐202 NPs to 4T1 tumor‐bearing mice results in markedly slower tumor growth to the same degree as treatment with anti‐PD‐L1 monoclonal antibody (α‐PD‐L1). Consistently, the combination of Ce6 NPs with BMS‐202 NPs or α‐PD‐L1 in parallel shows more efficacious antitumor and antimetastatic effects, accompanied by enhanced dendritic cell maturation and infiltration of antigen‐specific T cells into the tumors. Thus, inhibition rates of primary and distant tumors reach >90%. In addition, BMS‐202 NPs are able to attack spreading metastatic lung tumors and offer immune‐memory protection to prevent tumor relapse. These results indicate that BMS‐202 NPs possess effects similar to α‐PD‐L1 in the therapies of 4T1 tumors. Therefore, this work reveals the possibility of replacing the antibody used in immunotherapy for tumors with BMS‐202 NPs.  相似文献   

19.
Energy metabolism abnormity is one of the most significant hallmarks of cancer. As a result, large amino acid transporter 1 (LAT1) is remarkably overexpressed in both blood‐brain‐barrier and glioma tumor cells, leading a rapid and sufficient substrate transportation. 3CDIT and 4CDIT are originally synthesized by modifying the existing most potent LAT1 substrate. 3CDIT is selected as its higher glioma‐targeting ability. Since the microenvironment variation in tumor cells is another important feature of cancer, a great disparity in adenosine‐5′‐triphosphate (ATP) and glutathione (GSH) levels between extracellular and intracellular milieu can provide good possibilities for dual‐responsive drug release in tumor cells. Doxorubicin (DOX) is successfully intercalated into the ATP aptamer DNA scaffolds, compressed by GSH‐responsive polymer pOEI, and modified with 3CDIT to obtain 3CDIT‐targeting pOEI/DOX/ATP aptamer nanoparticles (NPs). Enhanced NP accumulation and rapid GSH & ATP dual‐responsive DOX release in glioma are demonstrated both in vitro and in vivo. More efficient therapeutic effects are shown with 3CDIT‐targeting pOEI/DOX/ATP aptamer NPs than free DOX and no systemic toxicity is observed. Therefore, glioma‐targeting delivery and GSH & ATP dual‐responsive release guarantee an adequate DOX accumulation within tumor cells and ensure a safe and efficient chemotherapy for glioma.  相似文献   

20.
First‐line cancer chemotherapy necessitates high parenteral dosage and repeated dosing of a combination of drugs over a prolonged period. Current commercially available chemotherapeutic agents, such as Doxil and Taxol, are only capable of delivering single drug in a bolus dose. The aim of this study is to develop dual‐drug‐loaded, multilayered microparticles and to investigate their antitumor efficacy compared with single‐drug‐loaded particles. Results show hydrophilic doxorubicin HCl (DOX) and hydrophobic paclitaxel (PTX) localized in the poly(dl ‐lactic‐co‐glycolic acid, 50:50) (PLGA) shell and in the poly(l ‐lactic acid) (PLLA) core, respectively. The introduction of poly[(1,6‐bis‐carboxyphenoxy) hexane] (PCPH) into PLGA/PLLA microparticles causes PTX to be localized in the PLLA and PCPH mid‐layers, whereas DOX is found in both the PLGA shell and core. PLGA/PLLA/PCPH microparticles with denser shells allow better control of DOX release. A delayed release of PTX is observed with the addition of PCPH. Three‐dimensional MCF‐7 spheroid studies demonstrate that controlled co‐delivery of DOX and PTX from multilayered microparticles produces a greater reduction in spheroid growth rate compared with single‐drug‐loaded particles. This study provides mechanistic insights into how distinctive structure of multilayered microparticles can be designed to modulate the release profiles of anticancer drugs, and how co‐delivery can potentially provide better antitumor response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号