首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of practical solutions for the energy‐efficient capture of carbon dioxide is of prime importance and continues to attract intensive research interest. Conceivably, the implementation of adsorption‐based processes using different cycling modes, e.g., pressure‐swing adsorption or temperature‐swing adsorption, offers great prospects to address this challenge. Practically, the successful deployment of practical adsorption‐based technologies depends on the development of made‐to‐order adsorbents expressing mutually two compulsory requisites: i) high selectivity/affinity for CO2 and ii) excellent chemical stability in the presence of impurities. This study presents a new comprehensive experimental protocol apposite for assessing the prospects of a given physical adsorbent for carbon capture under flue gas stream conditions. The protocol permits: i) the baseline performance of commercial adsorbents such as zeolite 13X, activated carbon versus liquid amine scrubbing to be ascertained, and ii) a standardized evaluation of the best reported metal–organic framework (MOF) materials for carbon dioxide capture from flue gas to be undertaken. This extensive study corroborates the exceptional CO2 capture performance of the recently isolated second‐generation fluorinated MOF material, NbOFFIVE ‐1‐Ni, concomitant with an impressive chemical stability and a low energy for regeneration. Essentially, the NbOFFIVE ‐1‐Ni adsorbent presents the best compromise by satisfying all the required metrics for efficient CO2 scrubbing.  相似文献   

2.
In the past decade, a huge development in rational design, synthesis, and application of molecular sieve membranes, which typically included zeolites, metal–organic frameworks (MOFs), and graphene oxides, has been witnessed. Owing to high flexibility in both pore apertures and functionality, MOFs in the form of membranes have offered unprecedented opportunities for energy‐efficient gas separations. Reports on the fabrication of well‐intergrown MOF membranes first appeared in 2009. Since then there has been tremendous growth in this area along with an exponential increase of MOF‐membrane‐related publications. In order to compete with other separation and purification technologies, like cryogenic distillation, pressure swing adsorption, and chemical absorption, separation performance (including permeability, selectivity, and long‐term stability) of molecular sieve membranes must be further improved in an attempt to reach an economically attractive region. Therefore, microstructural engineering and architectural design of MOF membranes at mesoscopic and microscopic levels become indispensable. This review summarizes some intriguing research that may potentially contribute to large‐scale applications of MOF membranes in the future.  相似文献   

3.
4.
5.
Metal–organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world‐wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF‐involved solar‐to‐chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co‐catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated.  相似文献   

6.
Noble metals (Au, Pt, and Ru) loaded into carbon supports show excellent performance for CO oxidation. Herein, a tunable metal–organic framework (MOF) coating is applied to a macroscopic 3D Ru/graphene aerogel (Ru/GA) composite, using a facial step‐by‐step method. The open macroporous structure of the Ru/GA provides pathways for the access and diffusion of reactant and product molecules. The resulting HK (HKUST‐1)‐containing MOF composite exhibits good performance for CO adsorption. It can simultaneously adsorb and oxidize CO, which improves the reaction rate. In this work, the catalytic efficiency of the resulting catalyst is higher than that (≈48.4%) of the Ru/GA. These findings provide a simple method for increasing the instantaneous concentration of reactants around the catalyst, which in turn increases the reaction rate. The catalytic performances of composites subjected to different pretreatment conditions are also investigated. Hopefully, this finding may provide a feasible direction for the effective management of the diverse environment issues.  相似文献   

7.
8.
9.
Heterometallic metal–organic frameworks (MOFs) are constructed from two or more kinds of metal ions, while still remaining their original topologies. Due to distinct reaction kinetics during MOF formation, partial distribution of different metals within a single MOF crystal can lead to sophisticated heterogeneous nanostructures. Here, this study reports an investigation of reaction kinetics for different metal ions in a bimetallic MOF system, the ZIF‐8/67 (M(2‐mIM)2, M = Zn for ZIF‐8, and Co for ZIF‐67, 2‐mIM = 2‐methylimidazole), by in situ optical method. Distinct kinetics of the two metals forming single‐component MOFs are revealed, and when both Co and Zn ions are present in the starting solution, homogeneous distributions of the two metals are only achieved at high Co/Zn ratio, while at low Co/Zn ratio concentration gradient from Co‐rich cores to Zn‐rich shells is observed. Further, by adding the two metals in sequence, more sophisticated structures are achieved. Specifically, when Co2+ is added first, ZIF‐67@ZIF‐8/67 core–shell nanocrystals are achieved with tunable core/shell thickness ratio depending on the time intervals; while when Zn2+ is added first, only agglomerates of irregular shape form due to the weak nucleation ability of Zn2+.  相似文献   

10.
11.
It is highly desirable yet remains challenging to improve the dispersion and usage of noble metal cocatalysts, beneficial to charge transfer in photocatalysis. Herein, for the first time, single Pt atoms are successfully confined into a metal–organic framework (MOF), in which electrons transfer from the MOF photosensitizer to the Pt acceptor for hydrogen production by water splitting under visible‐light irradiation. Remarkably, the single Pt atoms exhibit a superb activity, giving a turnover frequency of 35 h?1, ≈30 times that of Pt nanoparticles stabilized by the same MOF. Ultrafast transient absorption spectroscopy further unveils that the single Pt atoms confined into the MOF provide highly efficient electron transfer channels and density functional theory calculations indicate that the introduction of single Pt atoms into the MOF improves the hydrogen binding energy, thus greatly boosting the photocatalytic H2 production activity.  相似文献   

12.
Synthesizing ultrathin 2D metal–organic framework nanosheets in high yields has received increasing research interest but remains a great challenge. In this work, ultrathin zirconium‐porphyrinic metal–organic framework (MOF) nanosheets with thickness down to ≈1.5 nm are synthesized through a pseudoassembly–disassembly strategy. Owing to the their unique properties originating from their ultrathin thickness and highly exposed active sites, the as‐prepared ultrathin nanosheets exhibit far superior photocatalysis performance compared to the corresponding bulk MOF. This work highlights new opportunities in designing ultrathin MOF nanosheets and paves the way to expand the potential applications of MOFs.  相似文献   

13.
Mg batteries have the advantages of resource abundance, high volumetric energy density, and dendrite‐free plating/stripping of Mg anodes. However the injection of highly polar Mg2+ cannot maintain the structural integrity of intercalation‐type cathodes even for open framework prototypes. The lack of high‐voltage electrolytes and sluggish Mg2+ diffusion in lattices or through interfaces also limit the energy density of Mg batteries. Mg–S system based on moderate‐voltage conversion electrochemistry appears to be a promising solution to high‐energy Mg batteries. However, it still suffers from poor capacity and cycling performances so far. Here, a ZIF‐67 derivative carbon framework codoped by N and Co atoms is proposed as effective S host for highly reversible Mg–S batteries even under high rates. The discharge capacity is as high as ≈600 mA h g?1 at 1 C during the first cycle, and it is still preserved at ≈400 mA h g?1 after at least 200 cycles. Under a much higher rate of 5 C, a capacity of 300–400 mA h g?1 is still achievable. Such a superior performance is unprecedented among Mg–S systems and benefits from multiple factors, including heterogeneous doping, Li‐salt and Cl? addition, charge mode, and cut‐off capacity, as well as separator decoration, which enable the mitigation of electrode passivation and polysulfide loss.  相似文献   

14.
15.
In a recent experimental paper, it was claimed that pronounced excitonic signatures are observed in optical response of Zn‐based metal–organic frameworks (MOFs) at room temperature. Performing ab initio modelling, it is demonstrated that an alternative interpretation based on single‐electron optical transitions between narrow π‐bands in the system of aromatic rings of the ligand is far more plausible. Although these results do not rule the possibility of exciton formation in MOFs out completely, they show that extreme caution should be taken in attributing the features in photoabsorption spectra alone to excitons, and additional proof, such as data on long‐distance energy transfer, is necessary.  相似文献   

16.
17.
Metal–organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices.  相似文献   

18.
Carbon materials derived from metal–organic frameworks (MOFs) have attracted much attention in the field of scientific research in recent years because of their advantages of excellent electron conductivity, high porosity, and diverse applications. Tremendous efforts are devoted to improving their chemical and physical properties, including optimizing the morphology and structure of the carbon materials, compositing them with other materials, and so on. Here, many kinds of carbon materials derived from metal–organic frameworks are introduced with a particular focus on their promising applications in batteries (lithium‐ion batteries, lithium–sulfur batteries, and sodium‐ion batteries), supercapacitors (metal oxide/carbon and metal sulfide/carbon), electrocatalytic reactions (oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction), water treatment (MOF‐derived carbon and other techniques), and other possible fields. To close, some existing problem and corresponding possible solutions are proposed based on academic knowledge from the reported literature, along with a great deal of experimental experience.  相似文献   

19.
20.
Though generally considered insulating, recent progress on the discovery of conductive porous metal–organic frameworks (MOFs) offers new opportunities for their integration as electroactive components in electronic devices. Compared to classical semiconductors, these metal–organic hybrids combine the crystallinity of inorganic materials with easier chemical functionalization and processability. Still, future development depends on the ability to produce high‐quality films with fine control over their orientation, crystallinity, homogeneity, and thickness. Here self‐assembled monolayer substrate modification and bottom‐up techniques are used to produce preferentially oriented, ultrathin, conductive films of Cu‐CAT‐1. The approach permits to fabricate and study the electrical response of MOF‐based devices incorporating the thinnest MOF film reported thus far (10 nm thick).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号