首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Covalent organic frameworks (COFs) are an emerging class of porous crystalline materials constructed from designer molecular building blocks that are linked and extended periodically via covalent bonds. Their high stability, open channels, and ease of functionalization suggest that they can function as a useful cathode material in reversible lithium batteries. Here, a COF constructed from hydrazone/hydrazide‐containing molecular units, which shows good CO2 sequestration properties, is reported. The COF is hybridized to Ru‐nanoparticle‐coated carbon nanotubes, and the composite is found to function as highly efficient cathode in a Li–CO2 battery. The robust 1D channels in the COF serve as CO2 and lithium‐ion‐diffusion channels and improve the kinetics of electrochemical reactions. The COF‐based Li–CO2 battery exhibits an ultrahigh capacity of 27 348 mAh g?1 at a current density of 200 mA g?1, and a low cut‐off overpotential of 1.24 V within a limiting capacity of 1000 mAh g?1. The rate performance of the battery is improved considerably with the use of the COF at the cathode, where the battery shows a slow decay of discharge voltage from a current density of 0.1 to 4 A g?1. The COF‐based battery runs for 200 cycles when discharged/charged at a high current density of 1 A g?1.  相似文献   

2.
3.
Li–CO2 batteries represent an attractive solution for electrochemical energy storage by utilizing atmospheric CO2 as the energy carrier. However, their practical viability critically depends on the development of efficient and low‐cost cathode catalysts for the reversible formation and decomposition of Li2CO3. Here, the great potential of a structurally engineered polymer is demonstrated as the cathode catalyst for rechargeable Li–CO2 batteries. Conjugated cobalt polyphthalocyanine is prepared via a facile microwave heating method. Due to the crosslinked network, it is intrinsically elastic and has improved chemical, physical, and mechanical stability. Electrochemical measurements show that cobalt polyphthalocyanine facilitates the reversible formation and decomposition of Li2CO3, and therefore enables high‐performance Li–CO2 batteries with large areal capacity and impressive cycling performance. In addition, the elastic and reprocessable property of the polymeric catalyst renders it possible to fabricate flexible batteries.  相似文献   

4.
5.
Li–O2 batteries have received much attention due to their extremely large theoretical energy density. However, the high overpotentials required for charging Li–O2 batteries lower their energy efficiency and degrade the electrolytes and carbon electrodes. This problem is one of the main obstacles in developing practical Li–O2 batteries. To solve this problem, it is important to facilitate the oxidation of Li2O2 upon charging by using effective electrocatalysis. Using solid catalysts is not too effective for oxidizing the electronically isolating Li‐peroxide layers. In turn, for soluble catalysts, red‐ox mediators (RMs) are homogeneously dissolved in the electrolyte solutions and can effectively oxidize all of the Li2O2 precipitated during discharge. RMs can decompose solid Li2O2 species no matter their size, morphology, or thickness and thus dramatically increase energy efficiency. However, some negative side effects, such as the shuttle reactions of RMs and deterioration of the Li‐metal occur. Therefore, it is necessary to study the activity and stability of RMs in Li–O2 batteries in detail. Herein, recent studies related to redox mediators are reviewed and the mechanisms of redox reactions are illustrated. The development opportunities of RMs for this important battery technology are discussed and future directions are suggested.  相似文献   

6.
The excessive emission of CO2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO2 and its utilization in metal–CO2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO2 fixation/utilization and energy storage/release. Here, rechargeable Al–CO2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO2 ? 2Al2(CO3)3 + 3C, by which CO2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO2 fixation/utilization strategy with stable Al.  相似文献   

7.
8.
The Li‐CO2 battery is an emerging green energy technology coupling CO2 capture and conversion. The main drawback of present Li‐CO2 batteries is serious polarization and poor cycling caused by random deposition of lithium ions and big insulated Li2CO3 formation on the cathode during discharge. Herein, covalent organic frameworks (COF) are identified as the porous catalyst in the cathode of Li‐CO2 batteries for the first time. Graphene@COF is fabricated, graphene with thin and uniform imine COF loading, to enrich and confine CO2 in the nanospaces of micropores. The discharge voltage is raised by higher local CO2 concentration, which is predicted by the Nernst equation and realized by CO2 nanoenrichment. Moreover, uniform lithium ion deposition directed by the graphene@COF nanoconfined CO2 can produce smaller Li2CO3 particles, leading to easier Li2CO3 decomposition and thus lower charge voltage. The graphene@COF cathode with 47.5% carbon content achieves a discharge capacity of 27833 mAh g?1 at 75 mA g?1, while retaining a low charge potential of 3.5 V at 0.5 A g?1 for 56 cycles.  相似文献   

9.
10.
11.
Li‐CO2 batteries can not only capture CO2 to solve the greenhouse effect but also serve as next‐generation energy storage devices on the merits of economical, environmentally‐friendly, and sustainable aspects. However, these batteries are suffering from two main drawbacks: high overpotential and poor cyclability, severely postponing the acceleration of their applications. Herein, a new Co‐doped alpha‐MnO2 nanowire catalyst is prepared for rechargeable Li‐CO2 batteries, which exhibits a high capacity (8160 mA h g?1 at a current density of 100 mA g?1), a low overpotential (≈0.73 V), and an ultrahigh cyclability (over 500 cycles at a current density of 100 mA g?1), exceeding those of Li‐CO2 batteries reported so far. The reaction mechanisms are interpreted depending on in situ experimental observations in combination with density functional theory calculations. The outstanding electrochemical properties are mostly associated with a high conductivity, a large fraction of hierarchical channels, and a unique Co interstitial doping, which might be of benefit for the diffusion of CO2, the reversibility of Li2CO3 products, and the prohibition of side reactions between electrolyte and electrode. These results shed light on both CO2 fixation and new Li‐CO2 batteries for energy storage.  相似文献   

12.
13.
Silicene has recently received increasing interest due to its unique properties. However, the synthesis of silicene remains challenging, which limits its wide applications. In this work, a top‐down lithiation and delithiation process is developed to prepare few layer silicene‐like nanosheets from ball‐milled silicon nanopowders. It is found that delithiation solvent plays a critical role in the structure evolution of the final products. The use of isopropyl alcohol renders 2D silicene‐like products 30–100 nm in length and ≈2.4 nm in thickness. The electrochemical characterization analysis suggests that the product shows high performance for rechargeable Li–O2 batteries with 73% energy efficiency and high stability. The top‐down synthesis strategy proposed in this work not only provides a new solution to the challenging preparation issue of few layer silicene but also demonstrates the feasibility of producing 2D materials from nonlayered starting structures.  相似文献   

14.
All‐solid‐state Li–S batteries are promising candidates for next‐generation energy‐storage systems considering their high energy density and high safety. However, their development is hindered by the sluggish electrochemical kinetics and low S utilization due to high interfacial resistance and the electronic insulating nature of S. Herein, Se is introduced into S cathodes by forming SeSx solid solutions to modify the electronic and ionic conductivities and ultimately enhance cathode utilization in all‐solid‐state lithium batteries (ASSLBs). Theoretical calculations confirm the redistribution of electron densities after introducing Se. The interfacial ionic conductivities of all achieved SeSx–Li3PS4 (x = 3, 2, 1, and 0.33) composites are 10?6 S cm?1. Stable and highly reversible SeSx cathodes for sulfide‐based ASSLBs can be developed. Surprisingly, the SeS2/Li10GeP2S12–Li3PS4/Li solid‐state cells exhibit excellent performance and deliver a high capacity over 1100 mAh g?1 (98.5% of its theoretical capacity) at 50 mA g?1 and remained highly stable for 100 cycles. Moreover, high loading cells can achieve high areal capacities up to 12.6 mAh cm?2. This research deepens the understanding of Se–S solid solution chemistry in ASSLB systems and offers a new strategy to achieve high‐performance S‐based cathodes for application in ASSLBs.  相似文献   

15.
The Li–CO2 battery is a promising energy storage device for wearable electronics due to its long discharge plateau, high energy density, and environmental friendliness. However, its utilization is largely hindered by poor cyclability and mechanical rigidity due to the lack of a flexible and durable catalyst electrode. Herein, flexible fiber‐shaped Li–CO2 batteries with ultralong cycle‐life, high rate capability, and large specific capacity are fabricated, employing bamboo‐like N‐doped carbon nanotube fiber (B‐NCNT) as flexible, durable metal‐free catalysts for both CO2 reduction and evolution reactions. Benefiting from high N‐doping with abundant pyridinic groups, rich defects, and active sites of the periodic bamboo‐like nodes, the fabricated Li–CO2 battery shows outstanding electrochemical performance with high full‐discharge capacity of 23 328 mAh g?1, high rate capability with a low potential gap up to 1.96 V at a current density of 1000 mA g?1, stability over 360 cycles, and good flexibility. Meanwhile, the bifunctional B‐NCNT is used as the counter electrode for a fiber‐shaped dye‐sensitized solar cell to fabricate a self‐powered fiber‐shaped Li–CO2 battery with overall photochemical–electric energy conversion efficiency of up to 4.6%. Along with a stable voltage output, this design demonstrates great adaptability and application potentiality in wearable electronics with a breath monitor as an example.  相似文献   

16.
Rechargeable nonaqueous metal–air batteries attract much attention for their high theoretical energy density, especially in the last decade. However, most reported metal–air batteries are actually operated in a pure O2 atmosphere, while CO2 and moisture in ambient air can significantly impact the electrochemical performance of metal–O2 batteries. In the study of CO2 contamination on metal–O2 batteries, it has been gradually found that CO2 can be utilized as the reactant gas alone; namely, metal–CO2 batteries can work. On the other hand, investigations on CO2 fixation are in focus due to the potential threat of CO2 on global climate change, especially for its steadily increasing concentration in the atmosphere. The exploitation of CO2 in energy storage systems represents an alternative approach towards clean recycling and utilization of CO2. Here, the aim is to provide a timely summary of recent achievements in metal–CO2 batteries, and inspire new ideas for new energy storage systems. Moreover, critical issues associated with reaction mechanisms and potential directions for future studies are discussed.  相似文献   

17.
Li‐CO2 batteries are promising energy storage systems by utilizing CO2 at the same time, though there are still some critical barriers before its practical applications such as high charging overpotential and poor cycling stability. In this work, iridium/carbon nanofibers (Ir/CNFs) are prepared via electrospinning and subsequent heat treatment, and are used as cathode catalysts for rechargeable Li‐CO2 batteries. Benefitting from the unique porous network structure and the high activity of ultrasmall Ir nanoparticles, Ir/CNFs exhibit excellent CO2 reduction and evolution activities. The Li‐CO2 batteries present extremely large discharge capacity, high coulombic efficiency, and long cycling life. Moreover, free‐standing Ir/CNF films are used directly as air cathodes to assemble Li‐CO2 batteries, which show high energy density and ultralong operation time, demonstrating great potential for practical applications.  相似文献   

18.
Modern sustainability challenges in recent years have warranted the development of new energy storage technologies. Practical realization of the lithium–O2 battery holds great promise for revolutionizing energy storage as it holds the highest theoretical specific energy of any rechargeable battery yet discovered. However, the complete realization of Li–O2 batteries necessitates ambient air operations, which presents quite a few challenges, as carbon dioxide (CO2) and water (H2O) contaminants introduce unwanted byproducts from side reactions that greatly affect battery performance. Although current research has thoroughly explored the beneficial incorporation of CO2, much mystery remains over the inconsistent effects of H2O. The presence of water in both the cathode and electrolyte has been observed to alter reaction mechanisms differently, resulting in a diverse range of effects on voltage, capacity, and cyclability. Moreover, recent preliminary research with catalysts and redox mediators has attempted to utilize the presence of water to the battery's benefit. Here, the key mechanism discrepancies of water‐afflicted Li–O2 batteries are presented, concluding with a perspective on future research directions for nonaqueous Li–O2 batteries.  相似文献   

19.
20.
Sulfur cathodes have become appealing for rechargeable batteries because of their high theoretical capacity (1675 mA h g?1). However, the conventional cathode configuration borrowed from lithium‐ion batteries may not allow the pure sulfur cathode to put its unique materials chemistry to good use. The solid(sulfur)–liquid(polysulfides)–solid(sulfides) phase transitions generate polysulfide intermediates that are soluble in the commonly used organic solvents in Li–S cells. The resulting severe polysulfide diffusion and the irreversible active‐material loss have been hampering the development of Li–S batteries for years. The present study presents a robust, ultra‐tough, flexible cathode with the active‐material fillings encapsulated between two buckypapers (B), designated as buckypaper/sulfur/buckypaper (B/S/B) cathodes, that suppresses the irreversible polysulfide diffusion to the anode and offers excellent electrochemical reversibility with a low capacity fade rate of 0.06% per cycle after 400 cycles. Engineering enhancements demonstrate that the B/S/B cathodes represent a facile approach for the development of high‐performance sulfur electrodes with a high areal capacity of 5.1 mA h cm?2, which increases further to approach 7 mA h cm?2 on coupling with carbon‐coated separators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号